
Documentation for the Combine (focused) crawling system

Anders Ardö, Koraljka Golub

June 16, 2009

1

Contents

2

Part I

Overview

1 Introduction

The Combine system is an open, free, and highly con�gurable system for focused crawling
of Internet resources. It aims at providing a robust and e�cient tool for creating topic-
speci�c moderate sized databases (up to a few million records). Crawling speed is around
200 URLs per minute and a complete structured record takes up an average of 25 kilobytes
disk-space.

Figure 1: Overview of the Combine focused crawler.

Main features include:

• part of the SearchEngine-in-a-Box1 system

• extensive con�guration possibilities

• integrated topic �lter (automated topic classi�er) for focused crawling mode

• possibility to use any topic �lter (if provided as a Perl Plug-In module2) in focused
crawling mode

• crawl limitations based on regular expression on URLs - both include and exclude
rules (URL focus �lter)

• character set detection/normalization

• language detection

• HTML cleaning

1http://combine.it.lth.se/SearchEngineBox/
2http://combine.it.lth.se/PlugIns/

3

http://combine.it.lth.se/SearchEngineBox/
http://combine.it.lth.se/PlugIns/

• metadata extraction

• duplicate detection

• HTML parsing to provide structured records for each crawled page

• support for many document formats (text, HTML, PDF, PostScript, MSWord, MSPow-
erPoint, MSExcel, RTF, TeX, images)

• SQL database for data storage and administration

Naturally it obeys the Robots Exclusion Protocol3 and behaves nice to Web-servers. Be-
sides focused crawls (generating topic-speci�c databases), Combine supports con�gurable
rules on what's crawled based on regular expressions on URLs (URL focus �lter). The
crawler is designed to run continuously in order to keep crawled databases as up to date
as possible. It can be stopped and restarted any time without loosing any status or infor-
mation.

The operation of Combine (overview in Figure ??) as a focused crawler is based on a
combination of a general Web crawler and an automated subject classi�er. The topic focus
is provided by a focus �lter using a topic de�nition implemented as a thesaurus, where
each term is connected to a topic class.

Crawled data are stored as a structured records in a local relational database.
Section ?? outlines how to download, install and test the Combine system and includes

use scenarios � useful in order to get a jump start at using the system.
Section ?? discusses con�guration structure and highlights a few important con�gura-

tion variables.
Section ?? describes policies and methods used by the crawler.
Evaluation and performance are treated in sections ?? and ??.
The system has a number of components (see section ??), the main ones visible to the

user being combineCtrl which is used to start and stop crawling and view crawler status,
and combineExport that extracts crawled data from the internal database and exports
them as XML records.

Further details (lots and lots of them) can be found in part ?? 'Gory details' and in
Appendix ??.

2 Open source distribution, installation

The focused crawler has been restructured and packaged as a Debian package in order to
ease distribution and installation. The package contains dependency information to make
sure that all software that is needed to run the crawler is installed at the same time. In
connection with this we have also packaged a number of necessary Perl-modules as Debian
packages.
All software and packages are available from a number of places:

• the Combine focused crawler Web-site4

• the Comprehensive Perl Archive Network - CPAN5

3http://www.robotstxt.org/wc/exclusion.html
4http://combine.it.lth.se/
5http://search.cpan.org/ aardo/Combine/

4

http://www.robotstxt.org/wc/exclusion.html
http://combine.it.lth.se/
http://search.cpan.org/~aardo/Combine/

• SourceForge project �Combine focused crawler�6

In addition to the distribution sites there is a public discussion list at SourceForge7.

2.1 Installation

This distribution is developed and tested on Linux systems. It is implemented entirely in
Perl and uses the MySQL8 database system, both of which are supported on many other
operating systems. Porting to other UNIX dialects should be easy.

The system is distributed either as source or as a Debian package.

2.1.1 Installation from source for the impatient

Unless you are on a system supporting Debian packages (in which case look at Automated
installation (section ??)), you should download and unpack the source. The following
command sequence will then install Combine:

perl Makefile.PL

make

make test

make install

mkdir /etc/combine

cp conf/* /etc/combine/

mkdir /var/run/combine

Test that it all works (run as root)
./doc/InstallationTest.pl

2.1.2 Porting to not supported operating systems - dependencies

In order to port the system to another platform, you have to verify the availability, for this
platform, of the two main systems:

• Perl9

• MySQL version ≥ 4.110

If they are supported you stand a good chance to port the system.
Furthermore, the external Perl modules (listed in ??) should be veri�ed to work on the

new platform.
Perl modules are most easily installed using the Perl CPAN automated system

(perl -MCPAN -e shell).
Optionally the following external programs will be used if they are installed on your system:

• antiword (parsing MSWord �les)

• detex (parsing TeX �les)

6http://sourceforge.net/projects/focused-crawler
7http://lists.sourceforge.net/lists/listinfo/focused-crawler-general
8http://www.mysql.com/
9http://www.cpan.org/ports/index.html

10http://dev.mysql.com/downloads/

5

http://sourceforge.net/projects/focused-crawler
http://lists.sourceforge.net/lists/listinfo/focused-crawler-general
http://www.mysql.com/
http://www.cpan.org/ports/index.html
http://dev.mysql.com/downloads/

• pdftohtml (parsing PDF �les)

• pstotext (parsing PS and PDF �les, needs ghostview)

• xlhtml (parsing MSExcel �les)

• ppthtml (parsing MSPowerPoint �les)

• unrtf (parsing RTF �les)

• tth (parsing TeX �les)

• untex (parsing TeX �les)

2.1.3 Automated Debian/Ubuntu installation

• Add the following lines to your /etc/apt/sources.list:
deb http://combine.it.lth.se/ debian/

• Give the commands:
apt-get update

apt-get install combine

This also installs all dependencies such as MySQL and a lot of necessary Perl modules.

2.1.4 Manual installation

Download the latest distribution11.
Install all software that Combine depends on (see above).
Unpack the archive with tar zxf

This will create a directory named combine-XX with a number of subdirectories including
bin, Combine, doc, and conf.

'bin' contains the executable programs.
'Combine' contains needed Perl modules. They should be copied to where Perl will �nd

them, typically /usr/share/perl5/Combine/.
'conf' contains the default con�guration �les. Combine looks for them in /etc/combine/

so they need to be copied there.
'doc' contains documentation.
The following command sequence will install Combine:

perl Makefile.PL

make

make test

make install

mkdir /etc/combine

cp conf/* /etc/combine/

mkdir /var/run/combine

11http://combine.it.lth.se/#downloads

6

http://combine.it.lth.se/#downloads

2.1.5 Out-of-the-box installation test

A simple way to test your newly installed Combine system is to crawl just one Web-page
and export it as an XML-document. This will exercise much of the code and guarantee
that basic focused crawling will work.

• Initialize a crawl-job named aatest. This will create and populate the job-speci�c
con�guration directory and create the MySQL database that will hold the records:

sudo combineINIT --jobname aatest --topic /etc/combine/Topic_carnivor.txt

• Harvest the test URL by:

combine --jobname aatest

--harvest http://combine.it.lth.se/CombineTests/InstallationTest.html

• Export a structured Dublin Core record by:

combineExport --jobname aatest --profile dc

• and verify that the output, except for dates and order, looks like:

<?xml version="1.0" encoding="UTF-8"?>

<documentCollection version="1.1" xmlns:dc="http://purl.org/dc/elements/1.1/">

<metadata xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:format>text/html</dc:format>

<dc:format>text/html; charset=iso-8859-1</dc:format>

<dc:subject>Carnivorous plants</dc:subject>

<dc:subject>Drosera</dc:subject>

<dc:subject>Nepenthes</dc:subject>

<dc:title transl="yes">Installation test for Combine</dc:title>

<dc:description></dc:description>

<dc:date>2006-05-19 9:57:03</dc:date>

<dc:identifier>http://combine.it.lth.se/CombineTests/InstallationTest.html</dc:identifier>

<dc:language>en</dc:language>

</metadata>

Or run � as root � the script ./doc/InstallationTest.pl (see ?? in the Appendix)
which essentially does the same thing.

2.2 Getting started

A simple example work-�ow for a trivial crawl job name 'aatest' might look like:

1. Initialize database and con�guration (needs root privileges)
sudo combineINIT --jobname aatest

2. Load some seed URLs like (you can repeat this command with di�erent URLs as
many times as you wish)
echo 'http://combine.it.lth.se/' | combineCtrl load --jobname aatest

7

3. Start 2 harvesting processes
combineCtrl start --jobname aatest --harvesters 2

4. Let it run for some time. Status and progress can be checked using the program
'combineCtrl --jobname aatest' with various parameters.

5. When satis�ed kill the crawlers
combineCtrl kill --jobname aatest

6. Export data records in the ALVIS XML format
combineExport --jobname aatest --profile alvis

7. If you want to schedule a recheck for all the crawled pages stored in the database do
combineCtrl reharvest --jobname aatest

8. Go back to ?? for continuous operation.

Once a job is initialized it is controlled using combineCtrl. Crawled data is exported
using combineExport.

2.3 Online documentation

The latest, updated, detailed documentation is always available online12.

2.4 Use scenarios

2.4.1 General crawling without restrictions

Use the same procedure as in section ??. This way of crawling is not recommended for the
Combine system since it will generate really huge databases without any focus.

2.4.2 Focused crawling � domain restrictions

Create a focused database with all pages from a Web-site. In this use scenario we will
crawl the Combine site and the ALVIS site. The database is to be continuously updated,
i.e. all pages have to be regularly tested for changes, deleted pages should be removed
from the database, and newly created pages added.

1. Initialize database and con�guration
sudo combineINIT --jobname focustest

2. Edit the con�guration to provide the desired focus
Change the <allow> part in /etc/combine/focustest/combine.cfg from

#use either URL or HOST: (obs ':') to match regular expressions to either the

#full URL or the HOST part of a URL.

<allow>

#Allow crawl of URLs or hostnames that matches these regular expressions

HOST: .*$

</allow>

12http://combine.it.lth.se/documentation/

8

http://combine.it.lth.se/documentation/

to

#use either URL or HOST: (obs ':') to match regular expressions to either the

#full URL or the HOST part of a URL.

<allow>

#Allow crawl of URLs or hostnames that matches these regular expressions

HOST: www\.alvis\.info$

HOST: combine\.it\.lth\.se$

</allow>

The escaping of '.' by writing '\.' is necessary since the patterns actually are Perl
regular expressions. Similarly the ending '$' indicates that the host string should
end here, so for example a Web server on www.alvis.info.com (if such exists) will
not be crawled.

3. Load seed URLs
echo 'http://combine.it.lth.se/' | combineCtrl load --jobname focustest

echo 'http://www.alvis.info/' | combineCtrl load --jobname focustest

4. Start 1 harvesting process
combineCtrl start --jobname focustest

5. Daily export all data records in the ALVIS XML format
combineExport --jobname focustest --profile alvis

and schedule all pages for re-harvesting
combineCtrl reharvest --jobname focustest

2.4.3 Focused crawling � topic speci�c

Create and maintain a topic speci�c crawled database for the topic 'Carnivorous plants'.

1. Create a topic de�nition (see section ??) in a local �le named cpTopic.txt. (Can
be done by copying /etc/combine/Topic_carnivor.txt since it happens to be just
that.)

2. Create a �le named cpSeedURLs.txt with seed URLs for this topic, containing the
URLs:

http://www.sarracenia.com/faq.html

http://dmoz.org/Home/Gardening/Plants/Carnivorous_Plants/

http://www.omnisterra.com/bot/cp_home.cgi

http://www.vcps.au.com/

http://www.murevarn.se/links.html

3. Initialization
sudo combineINIT --jobname cptest --topic cpTopic.txt

This enables topic checking and focused crawl mode by setting con�guration variable
doCheckRecord = 1 and copying a topic de�nition �le (cpTopic.txt) to
/etc/combine/cptest/topicdefinition.txt.

9

4. Load seed URLs
combineCtrl load --jobname cptest < cpSeedURLs.txt

5. Start 3 harvesting process
combineCtrl start --jobname cptest --harvesters 3

6. Regularly export all data records in the ALVIS XML format
combineExport --jobname cptest --profile alvis

Running this crawler for an extended period will result in more than 200 000 records.

2.4.4 Focused crawling in an Alvis system

Use the same procedure as in section ?? (Focused crawling � topic speci�c) except for the
last point. Exporting should be done incrementally into an Alvis pipeline (in this example
listening at port 3333 on the machine nlp.alvis.info):
combineExport --jobname cptest --pipehost nlp.alvis.info --pipeport 3333 --incremental

2.4.5 Crawl one entire site and it's outlinks

This scenario requires the crawler to:

• crawl an entire target site

• crawl all the outlinks from the site

• crawl no other site or URL apart from external URLs mentioned on the one target
site

I.e. all of http://my.targetsite.com/*, plus any other URL that is linked to from a
page in http://my.targetsite.com/*.

1. Con�gure Combine to crawl this one site only. Change the <allow> part in
/etc/combine/XXX/combine.cfg to

#use either URL or HOST: (obs ':') to match regular expressions to either the

#full URL or the HOST part of a URL.

<allow>

#Allow crawl of URLs or hostnames that matches these regular expressions

HOST: my\.targetsite\.com$

</allow>

2. Crawl until you have the entire site (if it's a big site you might want to do the changes
suggested in FAQ no ??).

3. Stop crawling.

4. Change con�guration <allow> back to allow crawling of any domain (which is the
default).

10

<allow>

#Allow crawl of URLs or hostnames that matches these regular expressions

HOST: .*$

</allow>

5. Schedule all links in the database for crawling, something like (change XXX to your
jobname)
echo 'select urlstr from urls;' | mysql -u combine XXX

| combineCtrl load --jobname XXX

6. Change con�guration to disable automatic recycling of links:
#Enable(1)/disable(0) automatic recycling of new links

AutoRecycleLinks = 0

and maybe (depending or your other requirements) change:
#User agent handles redirects (1) or treat redirects as new links (0)

UserAgentFollowRedirects = 0

7. Start crawling and run until no more in queue.

3 Con�guration

Con�guration �les use a simple format consisting of either name/value pairs or com-
plex variables in sections. Name/value pairs are encoded as single lines formated like
'name = value'. Complex variables are encoded as multiple lines in named sections de-
limited as in XML, using '<name> ... </name>'. Sections may be nested for related
con�guration variables. Empty lines and lines starting with '#' (comments) are ignored.

The most important con�guration variables are the complex variables <url><allow>
(allows certain URLs to be harvested) and <url><exclude> (excludes certain URLs from
harvesting) which are used to limit your crawl to just a section of the WWW, based on
the URL. Loading URLs to be crawled into the system checks each URL �rst against the
Perl regular expressions of <url><allow> and if it matches goes on to match it against
<url><exclude> where it's discarded if it matches, otherwise it's scheduled for crawling.
(See section ?? 'URL �ltering').

3.1 Con�guration �les

All con�guration �les are stored in the /etc/combine/ directory tree. All con�guration
variables have reasonable defaults (section ??).

3.1.1 Templates

The values in

job_default.cfg contains job speci�c defaults. It is copied to a subdirectory named after
the job by combineINIT.

SQLstruct.sql contains structure of the internal SQL database used both for adminis-
tration and for holding data records. Details in section ??.

Topic_* contains various contributed topic de�nitions.

11

3.1.2 Global con�guration �les

Files used for global parameters for all crawler jobs.

default.cfg is the global defaults. It is loaded �rst. Consult section ?? and appendix
?? for details. Values can be overridden from the job-speci�c con�guration �le
combine.cfg.

tidy.cfg con�guration for Tidy cleaning of HTML code.

3.1.3 Job speci�c con�guration �les

The program combineINIT creates a job speci�c sub-directory in /etc/combine and popu-
lates it with some �les including combine.cfg initialized with a copy of job_default.cfg.
You should always change the value of the variable Operator-Email in this �le and set it
to something reasonable. It is used by Combine to identify you to the crawled Web-servers.

The job-name have to be given to all programs when started using the --jobname

switch.

combine.cfg the job speci�c con�guration. It is loaded second and overrides the global
defaults. Consult section ?? and appendix ?? for details.

topicde�nition.txt contains the topic de�nition for focused crawl if the --topic switch
is given to combineINIT. The format of this �le is described in section ??.

stopwords.txt a �le with words to be excluded from the automatic topic classi�cation
processing. One word per line. Can be empty (default) but must be present.

con�g_exclude contains more exclude patterns. Optional, automatically included by
combine.cfg. Updated by combineUtil.

con�g_serveralias contains patterns for resolving Web server aliases. Optional, auto-
matically included by combine.cfg. Updated by combineUtil.

sitesOK.txt optionally used by the built-in automated classi�cation algorithms (section
??) to bypass the topic �lter for certain sites.

3.1.4 Details and default values

Further details are found in section ?? 'Con�guration variables' which lists all variables
and their default values.

4 Crawler internal operation

The system is designed for continuous operation. The harvester processes a URL in several
steps as detailed in Figure ??. As a start-up initialization the frontier has to be seeded with
some relevant URLs. All URLs are normalized before they are entered in the database.
Data can be exported in various formats including the ALVIS XML document format13

and Dublin Core14 records.
The steps taken during crawling (numbers refer to Figure ??):

13http://www.alvis.info/alvis/architecture
14http://dublincore.org/

12

http://www.alvis.info/alvis/architecture
http://dublincore.org/

Figure 2: Architecture for the Combine focused crawler.

1. The next URL is fetched from the scheduler.

2. Combine obeys the Robots Exclusion Protocol15. Rules are cached locally.

3. The page is retrieved using a GET, GET-IF-MODIFIED, or HEAD HTTP request.

4. The HTML code is cleaned and normalized.

5. The character-set is detected and normalized to UTF-8.

6. (a) The page (in any of the formats PDF, PostScript, MSWord, MSExcel, MSPow-
erPoint, RTF and TeX/LaTeX) is converted to HTML or plain text by an
external program.

(b) Internal parsers handles HTML, plain text and images. This step extracts
structured information like metadata (title, keywords, description ...), HTML
links, and text without markup.

15http://www.robotstxt.org/wc/exclusion.html

13

http://www.robotstxt.org/wc/exclusion.html

7. The document is sent to the topic �lter (see section ??). If the Web-page is relevant
with respect to the focus topic, processing continues with:

(a) Heuristics like score propagation.

(b) Further analysis, like genre and language identi�cation.

(c) Updating the record database.

(d) Updating the frontier database with HTML links and URLs extracted from
plain text.

Depending on several factors like con�guration, hardware, network, workload, the
crawler normally processes between 50 and 200 URLs per minute.

4.1 URL selection criteria

In order to successfully select and crawl one URL the following conditions (in this order)
have to be met:

1. The URL has to be selected by the scheduling algorithm (section ??).

Relevant con�guration variables: WaitIntervalHost (section ??), WaitIntervalHar-
vesterLockRobotRules (section ??), WaitIntervalHarvesterLockSuccess (section ??)

2. The URL has to pass the allow test.

Relevant con�guration variables: allow (section ??)

3. The URL is not be excluded by the exclude test (see section ??).

Relevant con�guration variables: exclude (section ??)

4. The Robot Exclusion Protocol has to allow crawling of the URL.

5. Optionally the document at the URL location has to pass the topic �lter (section
??).

Relevant con�guration variables: classifyPlugIn (section ??), doCheckRecord (section
??).

4.2 Document parsing and information extraction

Each document is parsed and analyzed by the crawler in order to store structured document
records in the internal MySQL database. The structure of the record includes the �elds:

• Title

• Headings

• Metadata

• Plain text

• Original document

• Links � HTML and plain text URLs

14

• Link anchor text

• Mime-Type

• Dates � modi�cation, expire, and last checked by crawler

• Web-server identi�cation

Optional some extra analysis can be done, see section ??.
The system selects a document parser based on the Mime-Type together with available

parsers and converter programs.

1. For some mime-types an external program is called in order to convert the document
to a format handled internally (HTML or plain text).

Relevant con�guration variables: converters (section ??)

2. Internal parsers handle HTML, plain text, TeX, and Image.

Relevant con�guration variables: converters (section ??)

Supporting a new document format is as easy as providing a program that can convert
a document in this format to HTML or plain text. Con�guration of the mapping between
document format (Mime-Type) and converter program is done in the complex con�guration
variable 'converters' (section ??).

Out of the box Combine handle the following document formats: plain text, HTML,
PDF, PostScript, MSWord, MSPowerPoint, MSExcel, RTF, TeX, and images.

4.3 URL �ltering

Before an URL is accepted for scheduling (either by manual loading or recycling) it is
normalized and validated. This process comprises a number of steps:

• Normalization

� General practice: host-name lowercasing, port-number substitution, canonical
URL

� Removing fragments (ie '#' and everything after that)

� Cleaning CGI repetitions of parameters

� Collapsing dots ('./', '../') in the path

� Removing CGI parameters that are session ids, as identi�ed by patterns in the
con�guration variable sessionids (section ??)

� Normalizing Web-server names by resolving aliases. Identi�ed by patterns in the
con�guration variable serveralias (section ??). These patterns can be generated
by using the program combineUtil to analyze a crawled corpus.

• Validation: A URL has to pass all three validation steps outlined below.

� URL length has to be less than con�guration variable maxUrlLength (section
??)

� Allow test: one of the Perl regular expressions in the con�guration variable
allow (section ??) must match the URL

15

� Exclude test: none of the Perl regular expressions in the con�guration variable
exclude (section ??) must match the URL

Both allow and exclude can contain two types of regular expressions identi�ed by
either 'HOST:' or 'URL' in front of the regular expression. The 'HOST:' regular ex-
pressions are matched only against the Web-server part of the URL while the 'URL'
regular expressions are matched against the entire URL.

4.4 Crawling strategy

The crawler is designed to run continuously in order to keep crawled databases as up-
to-date as possible. Starting and halting crawling is done manually. The con�guration
variable AutoRecycleLinks (section ??) determines if the crawler should follow all valid
new links or just take those that already are marked for crawling.

All links from a relevant document are extracted, normalized and stored in the struc-
tured record. Those links that pass the selection/validation criteria outlined below are
marked for crawling.
To mark a URL for crawling requires:

• The URL should be from a page that is relevant (i.e. pass the focus �lter).

• The URL scheme must be one of HTTP, HTTPS, or FTP.

• The URL must not exceed the maximum length (con�gurable, default 250 charac-
ters).

• It should pass the 'allow' test (con�gurable, default all URLs passes).

• It should pass the 'exclude' test (con�gurable, default excludes malformed URLs,
some CGI pages, and URLs with �le-extensions for binary formats).

At each scheduling point one URL from each available (unlocked) host is selected to
generate a ready queue, which is then processed completely before a new scheduling is
done. Each selected URL in the ready queue thus ful�lls these requirements:

• URL must be marked for crawling (see above).

• URL must be unlocked (each successful access to a URL locks it for a con�gurable
time WaitIntervalHarvesterLockSuccess (section ??)).

• Host of the URL must be unlocked (each access to a host locks it for a con�gurable
time WaitIntervalHost (section ??)).

This implements a variant of BreathFirst crawling where a page is fetched if and only
if a certain time threshold is exceeded since the last access to the server of that page.

4.5 Built-in topic �lter � automated subject classi�cation using string
matching

The built-in topic �lter is an approach to automated classi�cation, that uses a topic def-
inition with a pre-de�ned controlled vocabulary of topical terms, to determine relevance
judgement. Thus it does not rely on a particular set of seed pages, or a collection of pre-
classi�ed example pages to learn from. It does require that some of the seed pages are

16

relevant and contain links into the topical area. One simple way of creating a set of seed
pages would be to use terms from the controlled vocabulary as queries for a general-purpose
search engine and take the result as seed pages.

The system for automated topic classi�cation (overview in Figure ??), that determines
topical relevance in the topical �lter, is based on matching subject terms from a controlled
vocabulary in a topic de�nition with the text of the document to be classi�ed [?]. The
topic de�nition uses subject classes in a hierarchical classi�cation system (corresponding to
topics) and terms associated with each subject class. Terms can be single words, phrases,
or Boolean AND-expressions connecting terms. Boolean OR-expressions are implicitly
handled by having several di�erent terms associated with the same subject class (see section
??).

The algorithm works by string-to-string matching of terms and text in documents. Each
time a match is found the document is awarded points based on which term is matched
and in which structural part of the document (location) the match is found [?]. The points
are summed to make the �nal relevance score of the document. If the score is above
a cut-o� value the document is saved in the database together with a (list of) subject
classi�cation(s) and term(s).

Figure 3: Overview of the automated topic classi�cation algorithm

By providing a list of known relevant sites in the con�guration �le sitesOK.txt (located
in the job speci�c con�guration directory) the above test can be bypassed. It works by
checking the host part of the URL against the list of known relevant sites and if a match
is found the page is validated and saved in the database regardless of the outcome of the
algorithm.

4.5.1 Topic de�nition

Located in /etc/combine/<jobname>/topicdefinition.txt. Topic de�nitions use triplets
(term, relevance weight, topic-classes) as its basic entities. Weights are signed integers and
indicate the relevance of the term with respect to the topic-classes. Higher values indicate

17

more relevant terms. A large negative value can be used to exclude documents containing
that term. Terms should be all lowercase.

Terms can be:

• single words

• a phrase (i.e. all words in exact order)

• a Boolean AND-expression connecting terms (i.e. all terms must be present but in
any order). The Boolean AND operator is encoded as '@and'.

A Boolean OR-expression has to be entered as separate term triplets. The Boolean ex-
pression �polymer AND (atactic OR syndiotactic)� thus has to be translated into two
separate triplets, one containing the term �polymer @and atactic�, and another with
�polymer @and syndiotactic�.

Terms can include (Perl) regular expressions like:

• a '?' makes the character immediately preceding optional, i.e. the term �coins?�
will match both �coin� and �coins�

• a �[�\s]*� is truncation (matches all character sequences except space ' '),
�glass art[�\s]*� will match �glass art�, �glass arts�, �glass artists�, �glass
articles�, and so on.

It is important to understand that each triplet in the topic de�nition is considered by
itself without any context, so they must each be topic- or sub-class speci�c in order to
be useful. Subject neutral terms like �use�, �test�, �history� should not be used. If really
needed they have to be quali�ed so that they become topic speci�c (see examples below).
Simple guidelines for creating the triplets and assigning weights are:

• Phrases or unique, topic-speci�c terms, should be used if possible, and assigned the
highest weights, since they normally are most discriminatory.

• Boolean AND-expressions are the next best.

• Single words can be too general and/or have several meanings or uses that make
them less speci�c and those should thus be assigned a small weights.

• Acronyms can be used as terms if they are unique.

• Negative weights should be used in order to exclude concepts.

4.5.2 Topic de�nition (term triplets) BNF grammar

TERM-LIST :== TERM-ROW '<cr>' || '#' <char>+ '<cr>' || '<cr >'
TERM-ROW :== WEIGHT ': ' TERMS '=' CLASS-LIST
WEIGHT :== ['-']<integer>
TERMS :== TERM [' @and ' TERMS]*
TERM :== WORD ' ' [WORD]*
WORD :== <char>+||<char>+<perl-reg-exp>
CLASS-LIST :== CLASSID [',' CLASS-LIST]

18

CLASSID :== <char>+

A line that starts with '#' is ignored and so are empty lines.
<perl-reg-exp> is only supported by the plain matching algorithm described in sec-

tion ??.
�CLASSID� is a topic (sub-)class speci�er, often from a hierarchical classi�cation system

like Engineering Index16.

4.5.3 Term triplet examples

50: optical glass=A.14.5, D.2.2

30: glass @and fiberoptics=D.2.2.8

50: glass @and technical @and history=D.2

50: ceramic materials @and glass=D.2.1.7

-10000: glass @and art=A

The �rst line says that a document containing the term �optical glass� should be
awarded 50 points for each of the two classes A.14.5 and D.2.2.

�glass� as a single term is probably too general, qualify it with more terms like:
�glass @and fiberoptics� , or �glass @and technical @and history� or use a phrase
like �glass fiber� or �optical glass�.

In order to exclude documents about artistic use of glass the term �glass @and art�
can be used with a (high) negative score.

An example from the topic de�nition for 'Carnivorous Plants' using regular expressions
is given below:

#This is a comment

75: d\.?\s*californica=CP.Drosophyllum

10: pitcher[^\s]*=CP

-10: pitcher[^\s]* @and baseball=CP

The term �d\.?\s*californica� will match D californica, D. californica, D.californica

etc.
The last two lines assure that a document containing �pitcher� gets 10 points but if

the document also contains �baseball� the points are removed.

4.5.4 Algorithm 1: plain matching

This algorithm is selected by setting the con�guration parameter
classifyPlugIn = Combine::Check_record

The algorithm produces a list of suggested topic-classes (subject classi�cations) and
corresponding relevance scores using the algorithm:

Relevance_score =

∑
all locations

 ∑
all terms

(hits[locationj][term i] ∗ weight[termi] ∗ weight[locationj])

16http://www.ei.org/

19

http://www.ei.org/

term weight (weight[termi]) is taken from the topic de�nition triplets.

location weight (weight[locationj]) are de�ned ad hoc for locations like title, metadata,
HTML headings, and plain text. However the exact values for these weights does
not seem to play a large role in the precision of the algorithm [?].

hits (hits[locationj][termi]) is the number of times termi occur in the text of locationj

The summed relevance score might, for certain applications, have to be normalized
with respect to text size of the document.

One problem with this algorithm is that a term that is found in the beginning of the
text contributes as much as a term that is found at the end of a large document. Another
problem is the distance and thus the coupling between two terms in a Boolean expression
might be very large in a big document and this is not taken into account by the above
algorithm.

4.5.5 Algorithm 2: position weighted matching

This algorithm is selected by setting the con�guration parameter
classifyPlugIn = Combine::PosCheck_record

In response to the problems cited above we developed a modi�ed version of the algo-
rithm that takes into account word position in the text and proximity for Boolean terms.
It also eliminates the need to assign ad hoc weights to locations. The new algorithm works
as follows.

First all text from all locations are concatenated (in the natural importance order title,
metadata, text) into one chunk of text. Matching of terms is done against this chunk.
Relevance score is calculated as

Relevance_score =

∑
all terms

 ∑
all matches

weight[termi]
log(k ∗ position[termi][matchj]) ∗ proximity[termi][matchj]

term weight (weight[termi]) is taken from the topic de�nition triplets

position (position[termi][matchj]) is the position in the text (starting from 1) for matchj

of termi. The constant factor k is normally 0.5

proximity (proximity[termi][matchj]) is

1 for non Boolean terms
log(distance_between_components) for Boolean terms

In this algorithm a matched term close to the start of text contributes more to the
relevance score than a match towards the end of the text. And for Boolean terms the
closer the components are the higher the contribution to the relevance score.

4.6 Built-in topic �lter � automated subject classi�cation using SVM

Topic �letring using SVM (Support Vector Machines) classi�ers are supported using the
SVMLight package17. This package has to be installed manually together with the Algo-

17http://svmlight.joachims.org/

20

http://svmlight.joachims.org/

rithm::SVMLight Perl module. For installation hints see CPAN SVMLight README18 or
'installing-algorithm-svmlight-linux-ubuntu19'

SVM classi�ers need a trained model before they can be used.
The procedure to get started is as follows:

• Make sure that Algorithm::SVMLight20 and SVMLight21 are installed.

• Collect examples of good and bad URLs that de�nes your topic (the more the better).

• Generate a SVM model with the program combineSVM.

• Initialize a new job with combineINIT.

• Copy the SVMmodel to the job's con�guration directory /etc/combine/<jobname>/SVMmodel.txt.

• Edit the con�guration �le /etc/combine/<jobname>/combine.cfg and add the fol-
lowing:

doCheckRecord = 1

classifyPlugIn = Combine::classifySVM

SVMmodel = SVMmodel.txt

• Then proceed with crawling as normal.

4.7 Topic �lter Plug-In API

The con�guration variable classifyPlugIn (section ??) is used to �nd the Perl module that
implements the desired topic �lter. The value should be formatted as a valid Perl module
identi�er (i.e. the module must be somewhere in the Perl module search path). Combine
will call a subroutine named 'classify' in this module, providing an XWI-object as in
parameter. An XWI-object is a structured object holding all information from parsing a
Web-page. The subroutine must return either 0 or 1, where

0: means record fails to meet the classi�cation criteria, i.e. ignore this record
1: means record is OK, store it in the database, and follow the links
More details on how to write a Plug-In can be found in the example classifyPlugIn-

Template.pm (see Appendix ??).

4.8 Analysis

Extra analysis, enabled by the con�guration variable doAnalyse (section ??), tries to de-
termine the language of the content and the country of the Web-server. Both are stored
in the internal database.

18http://search.cpan.org/src/KWILLIAMS/Algorithm-SVMLight-0.08/README
19http://www.dale-emmons.com/content/installing-algorithm-svmlight-linux-ubuntu
20http://search.cpan.org/ kwilliams/Algorithm-SVMLight-0.08/
21http://svmlight.joachims.org/

21

http://search.cpan.org/src/KWILLIAMS/Algorithm-SVMLight-0.08/README
http://www.dale-emmons.com/content/installing-algorithm-svmlight-linux-ubuntu
http://search.cpan.org/~kwilliams/Algorithm-SVMLight-0.08/
http://svmlight.joachims.org/

4.9 Duplicate detection

Duplicates of crawled documents are automatically detected with the aid of a MD5-
checksum calculated on the contents of the document.

The MD5-checksum is used as the master record key in the internal database thus
preventing pollution with duplicate pages. All URLs for a page are stored in the record, and
a page is not deleted from the database until the crawler has veri�ed that it's unavailable
from all the saved URLs.

4.10 URL recycling

URLs for recycling come from 3 sources:

• Links extracted during HTML parsing.

• Redirects (unless con�guration variable UserAgentFollowRedirects (section ??) is
set).

• URLs extracted from plain text (enabled by the con�guration variable extractLinks-
FromText (section ??)).

Automatic recycling of URLs is enabled by the con�guration variable AutoRecycleLinks
(section ??). It can also be done manually with the command
combineCtrl --jobname XXXX recyclelinks

The command combineCtrl --jobname XXXX reharvestmarks all pages in the database
for harvesting again.

4.11 Database cleaning

The tool combineUtil implements functionality for cleaning the database.

sanity/restoreSanity checks respectively restore consistency of the internal database.

deleteNetLoc/deletePath/deleteMD5/deleteRecordid deletes records from the data-
base based on supplied parameters.

serverAlias detects Web-server aliases in the database. All detected alias groups are
added to the serveralias con�guration (section ??). Records from aliased servers
(except for the �rst Web-server) will be deleted.

4.12 Complete application � SearchEngine in a Box

The SearchEngine-in-a-Box22 system is based on the two systems Combine Focused Crawler
and Zebra text indexing and retrieval engine23. This system allows you build a vertical
search engine for your favorite topic in a few easy steps.

The SearchEngine-in-a-Box Web-site contains instructions and downloads to make this
happen. Basically it makes use of the ZebraHost (see section ??) con�guration variable
which enables direct communication between the crawler and the database system and
thus indexes records as soon as they are crawled. This also means that they are directly
searchable.

22http://combine.it.lth.se/SearchEngineBox/
23http://www.indexdata.dk/zebra/

22

http://combine.it.lth.se/SearchEngineBox/
http://combine.it.lth.se/SearchEngineBox/
http://www.indexdata.dk/zebra/

5 Evaluation of automated subject classi�cation

5.1 Approaches to automated classi�cation

According to [?], one can distinguish between three major approaches to automated clas-
si�cation: text categorization, document clustering, and string-to-string matching.

Machine learning, or text categorization, is the most widespread approach to automated
classi�cation of text, in which characteristics of pre-de�ned categories are learnt from
intellectually categorized documents. However, intellectually categorized documents are
not available in many subject areas, for di�erent types of documents or for di�erent user
groups. For example, today the standard text classi�cation benchmark is a Reuters RCV1
collection [?], which has about 100 classes and 800000 documents. This would imply that
for a text categorization task some 8000 training and testing documents per class are
needed. Another problem is that the algorithm works only for that document collection
on which parts it has been trained. In addition, [?] claims that the most serious problem
in text categorization evaluations is the lack of standard data collections and shows how
di�erent versions of the same collection have a strong impact on performance, whereas
other versions do not.

In document clustering, the prede�ned categories (the controlled vocabulary) are auto-
matically produced: both clusters' labels and relationships between them are automatically
generated. Labelling of the clusters is a major research problem, with relationships between
the categories, such as those of equivalence, related-term and hierarchical relationships, be-
ing even more di�cult to automatically derive ([?], p.168). "Automatically-derived struc-
tures often result in heterogeneous criteria for category membership and can be di�cult
to understand" [?]. Also, clusters change as new documents are added to the collection.

In string-to-string matching, matching is conducted between a controlled vocabulary
and text of documents to be classi�ed. This approach does not require training documents.
Usually weighting schemes are applied to indicate the degree to which a term from a
document to be classi�ed is signi�cant for the document's topicality. The importance of
the controlled vocabularies such as thesauri in automated classi�cation has been recognized
in recent research. [?] used a thesaurus to improve performance of the k-NN classi�er
and managed to improve precision for about 14 %, without degrading recall. [?] showed
how information from a subject-speci�c thesaurus improved performance of key-phrase
extraction by more than 1,5 times in F1, precision, and recall. [?] demonstrated that
subject ontologies could help improve word sense disambiguation.

Thus, the chosen approach to automated subject classi�cation in the crawler was string-
matching. Apart from the fact that no training documents are required, a major motivation
to apply this approach was to re-use the intellectual e�ort that has gone into creating such
a controlled vocabulary. Vocabulary control in thesauri is achieved in several ways, out of
which the following are bene�cial for automated classi�cation:

• the terms are usually noun phrases, which are content words;

• the meaning of the term is restricted to that most e�ective for the purposes of a
particular thesaurus, which is indicated by the addition of scope notes and de�nitions,
providing additional context for automated classi�cation;

• three main types of relationships are displayed in a thesaurus: 1) equivalence (syn-
onyms, lexical variants, terms treated as synonyms for general purposes); 2) hier-
archical (generic, whole-part or instance relationships); 3) associative (terms that

23

are closely related conceptually but not hierarchically and are not members of an
equivalence set).

In automated classi�cation, equivalence terms allow for discovering the concepts and not
just words expressing them. Hierarchies provide additional context for determining the
correct sense of a term, and so do associative relationships.

5.1.1 Description of the used string-matching algorithm

Automated classi�cation approach used for evaluation was string-matching of terms (cf.
section ??) from an engineering-speci�c controlled vocabulary Engineering Index (Ei) the-
saurus and classi�cation scheme, used in Elsevier's Compendex database. Ei classi�cation
scheme is organized into six categories which are divided into 38 subjects, which are further
subdivided into 182 speci�c subject areas. These are further subdivided, resulting in some
800 individual classes in a �ve-level hierarchy. In Ei there are on average 88 intellectually
selected terms designating one class.

The algorithm searches for terms from the Ei thesaurus and classi�cation scheme in
documents to be classi�ed. In order to do this, a term list is created, containing class
captions, di�erent thesauri terms and classes which the terms and captions denote. The
term list consists of triplets: term (single word, Boolean term or phrase), class which
the term designates or maps to, and weight. Boolean terms consist of words that must
all be present but in any order or in any distance from each other. The Boolean terms
are not explicitly part of the Ei thesaurus, so they had to be created in a pre-processing
step. They are considered to be those terms which contain the following strings: 'and',
'vs.' (short for versus), ',' (comma), ';' (semi-colon, separating di�erent concepts in class
names), '(' (parenthesis, indicating the context of a homonym), ':' (colon, indicating a
more speci�c description of the previous term in a class name), and '--' (double dash,
indicating heading�subheading relationship). Upper-case words from the Ei thesaurus
and classi�cation scheme are left in upper case in the term list, assuming that they are
acronyms. All other words containing at least one lower-case letter are converted into
lower case. Geographical names are excluded on the grounds that they are not being
engineering-speci�c in any sense.

The following is an excerpt from the Ei thesaurus and classi�cation scheme, based on
which the excerpt from the term list (further below) was created.
From the classi�cation scheme (captions):

931.2 Physical Properties of Gases, Liquids and Solids

...

942.1 Electric and Electronic Instruments

...

943.2 Mechanical Variables Measurements

From the thesaurus:

TM Amperometric sensors

UF Sensors--Amperometric measurements

MC 942.1

TM Angle measurement

UF Angular measurement

24

UF Mechanical variables measurement--Angles

BT Spatial variables measurement

RT Micrometers

MC 943.2

TM Anisotropy

NT Magnetic anisotropy

MC 931.2

TM stands for the preferred term, UF for synonym, BT for broader term, RT for related
term, NT for narrower term; MC represents the main class. Below is an excerpt from one
term list, as based on the above examples:

1: electric @and electronic instruments=942.1,

1: mechanical variables measurements=943.2,

1: physical properties of gases @and liquids @and solids=931.2,

1: amperometric sensors=942.1,

1: sensors @and amperometric measurements=942.1,

1: angle measurement=943.2,

1: angular measurement=943.2,

1: mechanical variables measurement @and angles=943.2,

1: spatial variables measurement=943.2,

1: micrometers=943.2,

1: anisotropy=931.2,

1: magnetic anisotropy=931.2

The algorithm looks for strings from a given term list in the document to be classi�ed
and if the string (e.g. 'magnetic anisotropy' from the above list) is found, the class(es)
assigned to that string in the term list ('931.2' in our example) are assigned to the docu-
ment. One class can be designated by many terms, and each time the class is found, the
corresponding weight ('1' in our example) is assigned to the class.

The scores for each class are summed up and classes with scores above a certain cut-o�
(heuristically de�ned) can be selected as the �nal ones for that document. Experiments
with di�erent weights and cut-o�s are described in the following sections.

5.2 Evaluation methodology

5.2.1 Evaluation challenge

According to [?], intellectually-based subject indexing is a process involving the following
three steps: determining the subject content of the document, conceptual analysis to decide
which aspects of the subject should be represented, and translation of those concepts or
aspects into a controlled vocabulary. These steps are based on the library's policy in respect
to their collections and user groups. Thus, when in automated classi�cation study, the used
document collection is the one in which documents have been indexed intellectually, the
policies based on which indexing has been conducted should also be known, and automated
classi�cation should then be based on those policies as well.

Ei thesaurus and classi�cation scheme is rather big and deep (�ve hierarchical levels),
allowing many di�erent choices. Without a thorough qualitative analysis of automatically
assigned classes one cannot be sure if, for example, the classes assigned by the algorithm,

25

which were not intellectually assigned, are actually wrong, or if they were left-out by
mistake or because of the indexing policy.

In addition, subject indexers make errors such as those related to exhaustivity policy
(too many or too few terms get assigned), speci�city of indexing (usually this error means
that not the most speci�c term found was assigned), they may omit important terms, or
assign an obviously incorrect term ([?], p.86-87). In addition, it has been reported that
di�erent people, whether users or subject indexers, would assign di�erent subject terms
or classes to the same document. Studies on inter-indexer and intra-indexer consistency
report generally low indexer consistency ([?], p. 99-101). There are two main factors
that seem to a�ect it: 1) higher exhaustivity and speci�city of subject indexing both lead
to lower consistency (indexers choose the same �rst term for the major subject of the
document, but the consistency decreases as they choose more classes or terms); 2) the
bigger the vocabulary, or, the more choices the indexers have, the less likely they will
choose the same classes or terms (ibid.). Few studies have been conducted as to why
indexers disagree [?].

Automated classi�cation experiments today are mostly conducted under controlled
conditions, ignoring the fact that the purpose of automated classi�cation is improved in-
formation retrieval, which should be evaluated in context (cf. [?]). As Sebastiani ([?] p.
32) puts it, �the evaluation of document classi�ers is typically conducted experimentally,
rather than analytically. The reason is that we would need a formal speci�cation of the
problem that the system is trying to solve (e.g. with respect to what correctness and
completeness are de�ned), and the central notion that of membership of a document in a
category is, due to its subjective character, inherently nonformalizable�.

Due to the fact that methodology for such experiments has yet to be developed, as
well as due to limited resources, we follow the traditional approach to evaluation and start
from the assumption that intellectually assigned classes in the data collection are correct,
and the results of automated classi�cation are being compared against them.

5.2.2 Evaluation measures used

Assuming that intellectually assigned classes in the data collection are correct, evaluation
in this study is based on comparison of automatically derived classes against the intellec-
tually assigned ones. Ei classes are much related to each other and often there is only a
small topical di�erence between them. The topical relatedness is expressed in numbers
representing the classes: the more initial digits any two classes have in common, the more
related they are. Thus, comparing the classes at only the �rst few digits instead of all
the �ve (each representing one hierarchical level), would also make sense. Evaluation mea-
sures used were the standard microaveraged and macroaveraged precision, recall and F1
measures ([?], p.33) for complete matching of all digits as well as for partial matching.

5.2.3 Data collection

In the experiments, the following data collections were used:

1. For deriving signi�cance indicators assigned to di�erent Web page elements [?], and
identifying issues speci�c to Web pages [?] some 1000 Web pages engineering, to
which Ei classes had been manually assigned as part of the EELS subject gateway24

were used.

24http://eels.lub.lu.se/

26

http://eels.lub.lu.se/

2. For deriving weights based on the type of controlled vocabulary term [?], and for
enriching the term list with terms extracted using natural language processing, the
data collection consisted of 35166 document records from the Compendex database25.
From each document record the following elements were utilized: an identi�cation
number, title, abstract and intellectually pre-assigned classes, for example:

Identi�cation number: 03337590709

Title: The concept of relevance in IR

Abstract: This article introduces the concept of relevance as viewed and applied

in the context of IR evaluation, by presenting an overview of the multidimensional

and dynamic nature of the concept. The literature on relevance reveals how the

relevance concept, especially in regard to the multidimensionality of relevance,

is many faceted, and does not just refer to the various relevance criteria users

may apply in the process of judging relevance of retrieved information objects.

From our point of view, the multidimensionality of relevance explains why some

will argue that no consensus has been reached on the relevance concept. Thus,

the objective of this article is to present an overview of the many different

views and ways by which the concept of relevance is used - leading to a consistent

and compatible understanding of the concept. In addition, special attention is

paid to the type of situational relevance. Many researchers perceive situational

relevance as the most realistic type of user relevance, and therefore situational

relevance is discussed with reference to its potential dynamic nature, and as

a requirement for interactive information retrieval (IIR) evaluation.

Ei classi�cation codes: 903.3 Information Retrieval & Use, 723.5 Computer Applications,

921 Applied Mathematics

In our collection we included only those documents that have at least one class in
the area of Engineering, General, covered by 92 classes we selected. The subset of
35166 documents was selected from the Compendex database by simply retrieving
the �rst documents o�ered by the Compendex user interface, without changing any
preferences. The query was to �nd those documents that were assigned a certain
class. A minimum of 100 documents per class was retrieved at several di�erent points
in time during the last year. Compendex is a commercial database so the subset
cannot be made available to others. However, the authors can provide documents'
identi�cation numbers on request. In the data collection there were on average 838
documents per class, ranging from 138 to 5230.

3. For comparing classi�cation performance of the string-matching algorithm against a
machine-learning one [?], the data collection consisted of a subset of paper records
from the Compendex database, classi�ed into six selected classes. In this run of the
experiment, only the six classes were selected in order to provide us with indications
for further possibilities. Classes 723.1.1 (Computer Programming Languages), 723.4
(Arti�cial Intelligence), and 903.3 (Information Retrieval and Use) each had 4400
examples (the maximum allowed by the Compendex database provider), 722.3 (Data
Communication Equipment and Techniques) 2800, 402 (Buildings and Towers) 4283,
and 903 (Information Science) 3823 examples.

25http://www.engineeringvillage2.org/

27

http://www.engineeringvillage2.org/

5.3 Results

5.3.1 The role of di�erent thesauri terms

In one study [?], it has been explored to what degree di�erent types of terms in Engi-
neering Index in�uence automated subject classi�cation performance. Preferred terms,
their synonyms, broader, narrower, related terms, and captions were examined in combi-
nation with a stemmer and a stop-word list. The best performance measured as mean
F1 macroaveraged and microaverage F1 values has the preferred term list, and the worst
one the captions list. Stemming showed to be bene�cial in four out of the seven di�er-
ent term lists: captions, narrower, preferred, and synonyms. Concerning stop words, the
mean F1 improved for narrower and preferred terms. Concerning the number of classes
per document that get automatically assigned, when using captions less than one class is
assigned on average even when stemming is applied; narrower and synonyms improve with
stemming, close to our aim of 2,2 classes that have been intellectually assigned. The most
appropriate number of classes get assigned when preferred terms are used with stop-words.

Based on other term types, too many classes get assigned, but that could be dealt
with in the future by introducing cut-o�s. Each class is on average designated by 88 terms,
ranging from 1 to 756 terms per class. The majority of terms are related terms, followed by
synonyms and preferred terms. By looking at the 10 top-performing classes, it was shown
that the sole number of terms designating a class does not seem to be proportional to the
performance. Moreover, these best performing classes do not have a similar distribution of
types of terms designating them, i.e. the percentage of certain term types does not seem to
be directly related to performance. The same was discovered for the 10 worst-performing
classes.

In conclusion, the results showed that preferred terms perform best, whereas captions
perform worst. Stemming in most cases showed to improve performance, whereas the stop-
word list did not have a signi�cant impact. The majority of classes is found when using
all the terms and stemming: micro-averaged recall is 73 %. The remaining 27 % of classes
were not found because the words in the term list designating the classes did not exist
in the text of the documents to be classi�ed. This study implies that all types of terms
should be used for a term list in order to achieve best recall, but that higher weights could
be given to preferred terms, captions and synonyms, as the latter yield highest precision.
Stemming seems useful for achieving higher recall, and could be balanced by introducing
weights for stemmed terms. Stop-word list could be applied to captions, narrower and
preferred terms.

5.3.2 Enriching the term list using natural language processing

In order to allow for better recall, the basic term list was enriched with new terms. From the
basic term list, preferred and synonymous terms were taken, since they give best precision,
and based on them new terms were extracted. These new terms were derived from docu-
ments issued from the Compendex database, using multi-word morpho-syntactic analysis
and synonym acquisition. Multi-word morpho-syntactic analysis was conducted using a
uni�cation-based partial parser FASTER which analyses raw technical texts and, based on
built-in meta-rules, detects morpho-syntactic variants. The parser exploits morphological
(derivational and in�ectional) information as given by the database CELEX. Morphologi-
cal analysis was used to identify derivational variants (e.g. e�ect of gravity: gravitational
e�ect), and syntactical analysis to insert word inside a term (e.g. �ow measurement: �ow

28

discharge measurements), permute components of a term (e.g. control of the inventory:
inventory control) or add a coordinated component to a term (e.g. control system: control
and navigation system).

Synonyms were acquisited using a rule-based system, SynoTerm which infers synonymy
relations between complex terms by employing semantic information extracted from lexical
resources. Documents were �rst preprocessed and tagged with part-of-speech information
and lemmatized. Terms were then identi�ed using the term extractor YaTeA based on
parsing patterns and endogenous disambiguation. The semantic information provided by
the database WordNet was used as a bootstrap to acquire synonym terms of the basic
terms.

The number of classes that were enriched using these natural language processing meth-
ods is as follows: derivation 705, out of which 93 adjective to noun, 78 noun to adjective,
and 534 noun to verb derivations; permutation 1373; coordination 483; insertion 742; prepo-
sition change 69; synonymy 292 automatically extracted, out of which 168 were manually
veri�ed as correct.

By combining all the extracted terms into one term list, the mean F1 is 0.14 when
stemming is applied, and microaveraged recall is 0.11. This implies that enriching the
original Ei-based term list should improve recall. In comparison to results we get when
gained with the original term list (micro-averaged recall with stemming 0.73), here the
best recall, also microaveraged and with stemming, is 0.76.

5.3.3 Importance of HTML structural elements and metadata

In [?] the aim was to determine how signi�cance indicators assigned to di�erent Web
page elements (internal metadata, title, headings, and main text) in�uence automated
classi�cation. The data collection that was used comprised 1000 Web pages in engineering,
to which Engineering Information classes had been manually assigned. The signi�cance
indicators were derived using several di�erent methods: (total and partial) precision and
recall, semantic distance and multiple regression. It was shown that for best results all the
elements have to be included in the classi�cation process. The exact way of combining the
signi�cance indicators turned out not to be overly important: using the F1 measure, the
best combination of signi�cance indicators yielded no more than 3 % higher performance
results than the baseline.

5.3.4 Challenges and recommendations for classi�cation of Web pages

Issues speci�c to Web pages were identi�ed and discussed in [?]. The focus of the study
was a collection of Web pages in the �eld of engineering. Web pages present a special
challenge: because of their heterogeneity, one principle (e.g. words from headings are more
important than main text) is not applicable to all the Web pages of a collection. For
example, utilizing information from headings on all Web pages might not give improved
results, since headings are sometimes used simply instead of using bold or a bigger font
size.

A number of weaknesses of the described approach were identi�ed:

1. Class not found at all, because the words in the term list designating the classes were
not found in the text of the Web page to be classi�ed.

2. Class found but below threshold, which has to do with weighting and cut-o� values.
This is because in the approach only classes with scores above a pre-de�ned cut-o�

29

value are selected as the classes for the document: the �nal classes selected are those
with scores that contain at least 5 % of the sum of all the scores assigned in total, or,
if such a class doesn't exist, the class with the top score is selected. Another reason
could be that the classi�cation algorithm is made to always pick the most speci�c
class as the �nal one, which is in accordance with the given policy for intellectual
classi�cation.

3. Wrong automatically assigned class. Based on the sample, four di�erent sub-problems
have been identi�ed:

• words recognized as homonyms or distant synonyms;

• word found on a Web page is there because it is an instance of what it represents,
and it is not about such instances (e.g. a Web page on online tutorials and e-
learning programs for technical �elds gets wrongly classi�ed as a Web page on
'education');

• too distant term-class mappings, including cases when one term in the term list
is mapped to several di�erent classes;

• words mentioned on the Web page have little to do with the Web page's about-
ness, e.g. an institution's Web page gets wrongly classi�ed as 'facsimile systems
and technology', because among their contact information, there is also a fax
number, and the word 'fax' is mapped to that class.

4. Automatically assigned class that is not really wrong, which probably has to do with
the subject indexing policy such as exhaustivity.

Ways to deal with those problems were proposed for further research. These include
enriching the term list with synonyms and di�erent word forms, adjusting the term weights
and cut-o� values and word-sense disambiguation. In our further research the plan is
to implement automated methods. On the other hand, the suggested manual methods
(e.g. adding synonyms) would, at the same time, improve Ei's original function, that
of enhancing retrieval. Having this purpose in mind, manually enriching a controlled
vocabulary for automated classi�cation or indexing would not necessarily create additional
costs.

5.3.5 Comparing and combining two approaches

In [?] a machine-learning and a string-matching approach to automated subject classi�-
cation of text were compared as to their performance on a test collection of six classes.
Our �rst hypothesis was that, as the string-matching algorithm uses manually constructed
model, we expect it to have higher precision than the machine learning with its automati-
cally constructed model. On the other hand, while the machine-learning algorithm builds
the model from the training data, we expect it to have higher recall in addition to being
more �exible to changes in the data. Experiments have con�rmed the hypothesis only on
one of the six classes. Experimental results showed that SVM on average outperforms the
string-matching algorithm. Di�erent results were gained for di�erent classes. The best
results in string-matching are for class 402, which we attribute to the fact that it has the
highest number of term entries designating it (423). Class 903.3, on the other hand, has
only 26 di�erent term entries designating it in the string-matching term list, but string-
matching largely outperforms SVM in precision (0.97 vs. 0.79). This is subject to further
investigation.

30

The two approaches being complementary, we investigated di�erent combinations of
the two based on combining their vocabularies. The linear SVM in the original setting
was trained with no feature selection except the stop-word removal. Additionally, three
experiments were conducted using feature selection, taking:

1. only the terms that are present in the controlled vocabulary;

2. the top 1000 terms from centroid tf-idf vectors for each class (terms that are charac-
teristic for the class - descriptive terms);

3. the top 1000 terms from the SVM-normal trained on a binary classi�cation problem
for each class (terms that distinguish one class form the rest distinctive terms).

In the experiments with string-matching algorithm, four di�erent term lists were cre-
ated, and we report performance for each of them:

1. the original one, based on the controlled vocabulary;

2. the one based on automatically extracted descriptive keywords from the documents
belonging to their classes;

3. the one based on automatically extracted distinctive keywords from the documents
belonging to their classes;

4. the one based on union of the �rst and the second list.

SVM performs best using the original set of terms, and string-matching approach also
has best precision when using the original set of terms. Best recall for string-matching is
achieved when using descriptive terms. Reasons for these results need further investigation,
including a larger data collection and combining the two using predictions.

6 Performance and scalability

Performance evaluation of the automated subject classi�cation component is treated in
section ??.

6.1 Speed

Performance in terms of number of URLs treated per minute is of course highly dependent
on a number of circumstances like network load, capacity of the machine, the selection
of URLs to crawl, con�guration details, number of crawlers used, etc. In general, within
rather wide limits, you could expect the Combine system to handle up to 200 URLs per
minute. By �handle� we mean everything from scheduling of URLs, fetching pages over
the network, parsing the page, automated subject classi�cation, recycling of new links, to
storing the structured record in a relational database. This holds for small simple crawls
starting from scratch to large complicated topic speci�c crawls with millions of records.

The prime way of increasing performance is to use more than one crawler for a job. This
is handled by the --harvesters switch used together with the combineCtrl start com-
mand for example combineCtrl --jobname MyCrawl --harvesters 5 start will start 5
crawlers working together on the job 'MyCrawl'. The e�ect of using more than one crawler
on crawling speed is illustrated in �gure ?? and the resulting speedup is shown in table
??.

31

Figure 4: Combine crawler performance, using no focus and con�guration optimized for
speed.

No of crawlers 1 2 5 10 15 20

Speedup 1 2.0 4.8 8.2 9.8 11.0

Table 1: Speedup of crawling vs number of crawlers

Con�guration also has an e�ect on performance. In Figure ?? performance improve-
ments based on con�guration changes are shown. The choice of algorithm for automated
classi�cation turns out to have biggest in�uence on performance, where algorithm 2 � sec-
tion ?? � (classifyPlugIn = Combine::PosCheck_record � Pos in Figure ??) is much
faster than algorithm 1 � section ?? � (classifyPlugIn = Combine::Check_record � Std
in Figure ??). Con�guration optimization consisted of not using Tidy to clean HTML
(useTidy = 0) and not storing the original page in the database (saveHTML = 0). Tweak-
ing of other con�guration variables (like disabling logging to the MySQL database Loglev
= 0) also has an e�ect on performance but to a lesser degree.

6.2 Space

Storing structured records including the original document takes quite a lot of disk space.
On average 25 kB per record is used by MySQL. This includes the administrative overhead
needed for the operation of the crawler. A database with 100 000 records needs at least
2.5 GB on disk. Deciding not to store the original page in the database (saveHTML = 0)
gives considerable space savings. On average 8 kB per is used without the original HTML.

Exporting records in the ALVIS XML format further increases size to 42 kB per record.

32

Figure 5: E�ect of con�guration changes on focused crawler performance, using 10 crawlers
and a topic de�nition with 2512 terms.

Using the slight less redundant XML-format combine uses 27 kB per record. Thus 100 000
records will generate a �le of size 3 to 4 GB. The really compact Dublin Core format (dc)
generates 0.65 kB per record.

6.3 Crawling strategy

In [?] four di�erent crawling strategies are studied:

BreadthFirst The simplest strategy for crawling. It does not utilize heuristics in deciding
which URL to visit next. It uses the frontier as a FIFO queue, crawling links in the
order in which they are encountered.

BestFirst The basic idea is that given a frontier of URLs, the best URL according to some
estimation criterion is selected for crawling, using the frontier as a priority queue. In
this implementation, the URL selection process is guided by the topic score of the
source page as calculated by Combine.

PageRank The same as Best-First but ordered by PageRank calculated from the pages
crawled so far.

BreadthFirstTime A version of BreadthFirst. It is based on the idea of not accessing
the same server during a certain period of time in order not to overload servers.
Thus, a page is fetched if and only if a certain time threshold is exceeded since the
last access to the server of that page.

33

Results from a simulated crawl (�gure ?? from [?]) show that at �rst PageRank performs
best but BreadthFirstTime (which is used in Combine) prevails in the long run, although
di�erences are small.

Figure 6: Total number of relevant pages visited

7 System components

All executables take a mandatory switch --jobname which is used to identify the particular
crawl job you want as well as the job-speci�c con�guration directory.

Brie�y combineINIT is used to initialize SQL database and the job speci�c con�guration
directory. combineCtrl controls a Combine crawling job (start, stop, etc.) as well as
printing some statistics. combineExport exports records in various XML formats and
combineUtil provides various utility operations on the Combine database.

Detailed dependency information (section ??) can be found in the 'Gory details' section.
In appendix (??) you'll �nd all the man-pages collected.

7.1 combineINIT

Creates a MySQL database, database tables and initializes it. If the database exists it is
dropped and recreated. A job-speci�c con�guration directory is created in /etc/combine/

and populated with a default con�guration �le.
If a topic de�nition �lename is given, focused crawling using this topic de�ntion is

enabled per default. Otherwise focused crawling is disabled, and Combine works as a
general crawler.

34

7.2 combineCtrl

Implements various control functionality to administer a crawling job, like starting and
stopping crawlers, injecting URLs into the crawl queue, scheduling newly found links for
crawling, controlling scheduling, etc. This is the preferred way of controling a crawl job.

7.3 combineUtil

Implements a number of utilities both for extracting information:

• Global statistics about the database

• matched terms from topic de�nition

• topic classes assigned to documents

and for database maintenance:

• sanity check and restoration

• deleting records speci�ed by either Web-server, URL path, MD5 checksum, or inter-
nal record identi�er

• server alias detection and managing

7.4 combineExport

Export of structured records is done according to one of three pro�les: alvis, dc, or
combine. alvis and combine are very similar XML formats where combine is more com-
pact with less redundancy and alvis contains some more information. dc is XML-encoded
Dublin Core data.

The alvis pro�le format is de�ned by the Alvis Enriched Document XML Schema26.
For �exibility a switch --xsltscript adds the possibility to �lter the output using a

XSLT script. The script is fed a record according to the combine pro�le and the result is
exported.

Switches --pipehost and --pipeport makes combineExport send it's output directly
to an Alvis27 pipeline reader instead of printing on stdout. This together with the switch
--incremental, which just exports changes since the last invocation, provides an easy way
of keeping an external system like Alvis or a Zebra28 database updated.

7.5 Internal executables and Library modules

combine is the main crawling machine in the Combine system and combineRun starts,
monitors and restarts combine crawling processes.

7.5.1 Library

Main, crawler-speci�c, library components are collected in the Combine:: Perl name-
space.

26http://www.miketaylor.org.uk/tmp/alvis/d3.1/enriched-document.xsd
27http://www.alvis.info
28http://www.indexdata.dk/zebra/

35

http://www.miketaylor.org.uk/tmp/alvis/d3.1/enriched-document.xsd
http://www.alvis.info
http://www.indexdata.dk/zebra/

References

[1] Documentation - Methods for examining documents, determining their subjects, and
selecting index terms. International Organization for Standardization, Standard 5963-
1985.

[2] Lifeboat for knowledge organization: indexing theory.
http://www.db.dk/bh/Lifeboat_KO/CONCEPTS/indexing_theory.htm.

[3] A. Ardö and T. Koch. Automatic classi�cation applied to the full-text Internet doc-
uments in a robot-generated subject index. In Online Information 99, Proceedings,
pages 239�246, Dec. 1999. http://www.it.lth.se/anders/online99/.

[4] S. L. Bang, J. D. Yang, and H. J. Yang. Hierarchical document categorization with
k-nn and concept-based thesauri. Information Processing and Management, (42):387�
406, 2006.

[5] H. Chen and S. T. Dumais. Bringing order to the web: automatically categorizing
search results. In Proc. of CHI-00, ACM International Conference on Human Factors
in Computing Systems, pages 145�152, 2000.

[6] P. J. Garcés, J. A. Olivas, and F. P. Romero. Concept-matching ir systems ver-
sus word-matching information retrieval systems: Considering fuzzy interrelations for
indexing web pages. JASIS&T, 57(4):564�576, 2006.

[7] K. Golub. Automated subject classi�cation of textual Web documents. Journal of
Documentation, 62(3):350�371, 2006.

[8] K. Golub. Automated subject classi�cation of textual web pages, based on a con-
trolled vocabulary: challenges and recommendations. New review of hypermedia and
multimedia, 12(1):11�27, June 2006. Special issue on knowledge organization systems
and services.

[9] K. Golub. The role of di�erent thesauri terms in automated subject classi�cation of
text. In IEEE/WIC/ACM International Conference on Web Intelligence, Dec. 2006.

[10] K. Golub and A. Ardö. Importance of HTML Structural Elements in Automated Sub-
ject Classi�cation. In A. Rauber, S. Christodoulakis, and A. M. Tjoa, editors, 9th Eu-
ropean Conference on Research and Advanced Technology for Digital Libraries - ECDL
2005, volume 3652 of Lecture Notes in Computer Science, pages 368 � 378. Springer,
Sept. 2005. Manuscript at: http://www.it.lth.se/knowlib/publ/ECDL2005.pdf.

[11] K. Golub, A. Ardö, D. Mladenic, and M. Grobelnik. Comparing and Combining Two
Approaches to Automated Subject Classi�cation of Text. In J. Gonzalo, C. Thanos,
M. F. Verdejo, and R. C. Carrasco, editors, 10th European Conference on Research
and Advanced Technology for Digital Libraries - ECDL 2006, volume 4172 of Lecture
Notes in Computer Science, pages 467�470. Springer, Sept. 2006.

[12] P. Ingwersen and K. Järvelin. The turn: integration of information seeking and re-
trieval in context. Springer, Dordrecht, The Netherlands, 2005.

[13] F. W. Lancaster. Indexing and abstracting in theory and practice. Facet, London,
2003. 3rd ed.

36

http://www.db.dk/bh/Lifeboat_KO/CONCEPTS/indexing_theory.htm
http://www.it.lth.se/anders/online99/
http://www.it.lth.se/knowlib/publ/ECDL2005.pdf

[14] D. D. Lewis, Y. Yang, T. Rose, and F. Li. Rcv1: A new benchmark collection for
text categorization research. The Journal of Machine Learning Research, (5):361�397,
2004.

[15] O. Medelyan and I. Witten. Thesaurus based automatic keyphrase indexing. In
Proceedings of the Sixth ACM/IEEE Joint Conference on Digital Libraries, JCDL 06,
pages 296�297, 2006.

[16] H. A. Olson and J. J. Boll. Subject analysis in online catalogs. Englewood, CO:
Libraries Unlimited, 2001. 2nd ed.

[17] F. Sebastiani. Machine learning in automated text categorization. ACM Computing
Surveys, 34(1):1�47, 2002.

[18] E. Svenonius. The intellectual foundations of information organization. MIT Press,
Cambridge, MA, USA, 2000.

[19] R. R. Trujilo. Simulation tool to study focused web crawling strategies. Master's
thesis, Dept. of Information Technology, Lund University, P.O. Box 118, S-221 00
Lund, Sweden, Mar. 2006. http://combine.it.lth.se/CrawlSim/CrawlSim.pdf.

[20] Y. Yang. An evaluation of statistical approaches to text categorization. Journal of
Information Retrieval, (1):67�88, 1999.

37

http://combine.it.lth.se/CrawlSim/CrawlSim.pdf

Part II

Gory details

8 Frequently asked questions

1. What does the message 'Wide character in subroutine entry ...' mean?

That something is horribly wrong with the character encoding of this page.

2. What does the message 'Parsing of undecoded UTF-8 will give garbage when decod-
ing entities ...' mean?

That something is wrong with character decoding of this page.

3. I can't �gure out how to restrict the crawler to pages below 'http://www.foo.com/bar/'?

Put an appropriate regular expression in the <allow> section of the con�guration
�le. Appropriate means a Perl regular expression, which means that you have to
escape special characters. Try with
URL http:\/\/www\.foo\.com\/bar\/

4. I have a simple con�guration variable set, but Combine does not obey it?

Check that there are not 2 instances of the same simple con�guration variable in the
same con�guration �le. Unfortunately this will break con�guration loading.

5. If there are multiple <allow> entries, must an URL �t all or any of them?

A match to any of the entries will make that URL allowable for crawling. You can
use any mix of HOST: and URL entries

6. It would also be nice to be able to crawl local �les.

Presently the crawler only accepts HTTP, HTTPS, and FTP as protocols.

7. Crawling of a single host is VERY slow. Is there some way for me to speed the
crawler up?

Yes it's one of the built-in limitations to keep the crawler beeing 'nice'. It will only
access a particular server once every 60 seconds by default. You can change the
default by adjusting the following con�guration variables, but please keep in mind
that you increase the load on the server.
WaitIntervalSchedulerGetJcf=2
WaitIntervalHost = 5

8. Is it possible to crawl only one single web-page?

Use the command:
combine --jobname XXX --harvesturl http://www.foo.com/bar.html

9. How can I crawl a �xed number of link steps from a set of seed pages? For example
one web-page and all local links on that web-page (and not any further?

Initialize the database and load the seed pages. Turn of automatic recycling of links
by setting the simple con�guration variable 'AutoRecycleLinks' to 0.

38

Start crawling and stop when 'combineCtrl �jobname XXX howmany' equals 0.

Handle recycling manually using 'combineCtrl, with action 'recyclelinks'. (Give the
command combineCtrl �jobname XXX recyclelinks')

Iterate to the depth of your liking.

10. I run combineINIT but the con�guration directory is not created?

You need to run combineINIT as root, due to �le protection permissions.

11. Where are the logs?

They are stored in the SQL database <jobname> in the table log.

12. What are the main di�erences between Std (classifyPlugIn = Combine::Check_record)
and PosCheck (classifyPlugIn = Combine::PosCheck_record) algorithms for au-
tomated subject classi�cation?

Std can handle Perl regular expressions in terms and does not take into account if
the term is found in the beginning or end of the document. PosCheck can't handle
Perl regular expressions but is faster, and takes word position and proximity into
account.

For detailed descriptions see sections Algorithm 1 (??) Algorithm 2 (??).

13. I don't understand what this means. Can you explain it to me ? Thank you !

40: sundew[^\s]*=CP.Drosera

40: tropical pitcher plant=CP.Nepenthes

It's part of the topic de�nition (term list) for the topic 'Carnivorous plants'. It's well
described in the documentation, please see section ??. The strange characters are
Perl regular expressions mostly used for truncation etc.

14. I want to get all pages about "icecream" from "www.yahoo.com". And I don't have
clear idea about how to write the topic de�nition �le. Can you show me an example?

So for getting all pages about 'icecream' from 'www.yahoo.com' you have to:

(a) write a topic de�nition �le according to the format above, eg containing topic
speci�c terms. The �le is essential a list of terms relevant for the topic. Format of
the �le is "numeric_importance: term=TopicClass" e.g. "100: icecream=YahooIce"
(Say you call your topic 'YahooIce'). A few terms might be:

100: icecream=YahooIce

100: ice cone=YahooIce

and so on stored in a �le called say TopicYahooIce.txt

(b) Initialization
sudo combineINIT -jobname cptest -topic TopicYahooIce.txt

(c) Edit the con�guration to only allow crawling of www.yahoo.com Change the
<allow> part in /etc/combine/focustest/combine.cfg from

39

#use either URL or HOST: (obs ':') to match regular expressions to either the

#full URL or the HOST part of a URL.

<allow>

#Allow crawl of URLs or hostnames that matches these regular expressions

HOST: .*$

</allow>

to

#use either URL or HOST: (obs ':') to match regular expressions to either the

#full URL or the HOST part of a URL.

<allow>

#Allow crawl of URLs or hostnames that matches these regular expressions

HOST: www\.yahoo\.com$

</allow>

(d) Load some good seed URLs

(e) Start 1 harvesting process

15. Why load some good seeds URLs and what the seeds URLs mean.

This is just a way of telling the crawler where to start.

16. My problem is that the installation there requires root access, which I cannot get. Is
there a way of running Combine without requiring any root access?

The are three things that are problematic

(a) Con�gurations are stored in /etc/combine/...

(b) Runtime PID �les are stored in /var/run/combine

(c) You have to be able to create MySQL databases accessible by combine

If you take the source and look how the tests (make test) are made you might �nd
a way to �x the �rst. Though this probably involves modifying the source - maybe
only the Combine/Con�g.pm

The second is strictly not necessary and it will run even if /var/run /combine does
not exist, although not the command combineCtrl --jobname XXX kill

On the other hand the third is necessary and I can't think of a way around it except
making a local installation of MySQL and use that.

17. What does the following entries from the log table mean?

(a) | 5409 | HARVPARS 1_zltest | 2006-07-14 15:08:52 | M500; SD empty, sleep 20 second... |

This means that there are no URLs ready for crawling (SD empty). Also you
can use combineCtrl to see current status of ready queue etc

(b) | 7352 | HARVPARS 1_wctest | 2006-07-14 17:00:59 | M500; urlid=1; netlocid=1; http://www.shanghaidaily.com/

Crawler process 7352 got a URL (http://www.shanghaidaily.com/) to check
(1_wctest is a just a name non signi�cant) M500 is a sequence number for an
individual crawler starting at 500 and when it reaches 0 this crawler process is
killed and another is created. urlid and netlocid are internal identi�ers used in
the MySQL tables.

40

(c) | 7352 | HARVPARS 1_wctest | 2006-07-14 17:01:10 | M500; RobotRules OK, OK

Crawler process have checked that this URL (identi�ed earlier in the log by
pid=7352 and M500) can be crawled according to the Robot Exclusion protocol.

(d) | 7352 | HARVPARS 1_wctest | 2006-07-14 17:01:10 | M500; HTTP(200 = "OK") => OK

It has fetched the page (identi�ed earlier in the log by pid=7352 and M500) OK

(e) | 7352 | HARVPARS 1_wctest | 2006-07-14 17:01:10 | M500; Doing: text/html;200;0F061033DAF69587170F8E285E950120;Not used |

It is processing the page (in the format text/html) to see if it is of topical interest
0F061033DAF69587170F8E285E950120 is the MD5 checksum of the page

18. In fact, I want to know which crawled URLs are corresponding to the certain topic
class such as CP.Aldrovanda . Can you tell me how can I know ?

You have to get into the raw MySQL database and perform a query like

SELECT urls.urlstr FROM urls,recordurl,topic WHERE urls.urlid=recordurl.urlid
AND recordurl.recordid=topic.recordid AND topic.notation='CP.Aldrovanda';

Table urls contain all URLs seen by the crawler. Table recordurl connect urlid to
recordid. recordid is used in all tables with data from the crawled Web pages.

19. What is the meaning of the item "ALL" in the notation column of the topic table?

If you use multiple topics in your topic-de�nition (ie the string after '=') then all the
relevant topic scores for this page is summed and given the topic notation 'ALL'.

Just disregard it if you only use one topic-class.

20. Combine should crawl all pages underneath www.geocities.com/boulevard/newyork/,
but not go outside the domain (i.e. going to www.yahoo.com) but also not going
higher in position (i.e. www.geocities.com/boulevard/atlanta/).
Is it possible to set up Combine like this?

Yes, change the <allow>-part of your con�guration �le combine.cfg to select what
URLs should be allowed for crawling (by default everything is allowed). See also
section ??.

So change

<allow>

#Allow crawl of URLs or hostnames that matches these regular expressions

HOST: .*$

</allow>

to something like

<allow>

#Allow crawl of URLs or hostnames that matches these regular expressions

URL http:\/\/www\.geocities\.com\/boulevard\/newyork\/

</allow>

(the backslashes are needed since these patterns are in fact Perl regular expressions)

41

9 Con�guration variables

9.1 Name/value con�guration variables

9.1.1 analysePlugin

Used by: utilPlugIn.pm.svn-base; utilPlugIn.pm

9.1.2 AutoRecycleLinks

Default value = 1

Description: Enable(1)/disable(0) automatic recycling of new links

Used by: SD_SQL.pm.svn-base; SD_SQL.pm

9.1.3 baseCon�gDir

Default value = /etc/combine

Description: Base directory for con�guration �les; initialized by Con�g.pm

Used by: combineExport.svn-base; FromHTML.pm; combineExport; FromHTML.pm.svn-
base

Set by: Con�g.pm; Con�g.pm.svn-base

9.1.4 classifyPlugIn

Default value = Combine::Check_record

Description: Which topic classi�cation PlugIn module algorithm to use
Combine::Check_record and Combine::PosCheck_record included by default
NEW SVM classi�er: Combine::classifySVM
see classifyPlugInTemplate.pm and documentation to write your own

Used by: combineReClassify.svn-base; combine; combineReClassify; combine.svn-base

9.1.5 con�gDir

Default value = NoDefaultValue

Description: Directory for job speci�c con�guration �les; taken from 'jobname'

Used by: classifySVM.pm.svn-base; combineUtil; utilPlugIn.pm.svn-base; classifySVM.pm;
PosCheck_record.pm; Check_record.pm; combineCountry.pl; combineCountry.pl.svn-
base; Check_record.pm.svn-base; PosCheck_record.pm.svn-base; utilPlugIn.pm; combineUtil.svn-
base

Set by: Con�g.pm; Con�g.pm.svn-base

42

9.1.6 doAnalyse

Default value = 1

Description: Enable(1)/disable(0) analysis of genre, language

Used by: combine; combine.svn-base

9.1.7 doCheckRecord

Description: Enable(1)/disable(0) topic classi�cation (focused crawling)
Generated by combineINIT based on �topic parameter

Used by: combine; combine.svn-base; combineReClassify.svn-base; combineReClassify

9.1.8 doOAI

Default value = 1

Description: Use(1)/do not use(0) OAI record status keeping in SQL database

Used by: MySQLhdb.pm.svn-base; MySQLhdb.pm

9.1.9 extractLinksFromText

Default value = 1

Description: Extract(1)/do not extract(0) links from plain text

Used by: combine; combine.svn-base

9.1.10 HarvesterMaxMissions

Default value = 500

Description: Number of pages to process before restarting the harvester

Used by: combine; combine.svn-base

9.1.11 HarvestRetries

Default value = 5

Used by: combine; combine.svn-base

9.1.12 httpProxy

Default value = NoDefaultValue

Description: Use a proxy server if this is de�ned (default no proxy)

Used by: UA.pm; UA.pm.svn-base

43

9.1.13 LogHandle

Used by: classifySVM.pm.svn-base; FromHTML.pm; classifySVM.pm; PosCheck_record.pm;
Check_record.pm; Check_record.pm.svn-base; PosCheck_record.pm.svn-base; FromHTML.pm.svn-
base

Set by: combineReClassify.svn-base; combine; combineReClassify; combine.svn-base

9.1.14 Loglev

Description: Logging level (0 (least) - 10 (most))

Used by: combine; combine.svn-base

9.1.15 maxUrlLength

Default value = 250

Description: Maximum length of a URL; longer will be silently discarded

Used by: selurl.pm.svn-base; selurl.pm

9.1.16 MySQLdatabase

Default value = NoDefaultValue

Description: Identi�es MySQL database name, user and host

Used by: Con�g.pm; Con�g.pm.svn-base

9.1.17 MySQLfulltext

Description: Enable(1)/disable(0) fulltext-index in MySQL table search

Used by: MySQLhdb.pm.svn-base; MySQLhdb.pm

9.1.18 MySQLhandle

Used by: combineSVM.svn-base; combineExport; MySQLhdb.pm.svn-base; combineReClassify.svn-
base; combineCountry.pl; combineUtil.svn-base; classifySVM.pm.svn-base; combineU-
til; RobotRules.pm.svn-base; LogSQL.pm; combine; combineExport.svn-base; classi-
fySVM.pm; RobotRules.pm; combine.svn-base; SD_SQL.pm; combineRank; combineRank.svn-
base; LogSQL.pm.svn-base; XWI2XML.pm; combineSVM; combineCountry.pl.svn-
base; XWI2XML.pm.svn-base; MySQLhdb.pm; SD_SQL.pm.svn-base; combineRe-
Classify

Set by: Con�g.pm; Con�g.pm.svn-base

9.1.19 Operator-Email

Default value = "YourEmailAdress@YourDomain"

Description: Please change

Used by: RobotRules.pm.svn-base; RobotRules.pm; UA.pm; UA.pm.svn-base

44

9.1.20 Password

Default value = "XxXxyYzZ"

Description: Password not used yet. (Please change)

9.1.21 PattiSpecial

Used by: combine; combine.svn-base

9.1.22 relTextPlugin

Used by: FromHTML.pm.svn-base; FromHTML.pm

9.1.23 saveHTML

Default value = 1

Description: Store(1)/do not store(0) the raw HTML in the database

Used by: MySQLhdb.pm.svn-base; MySQLhdb.pm

9.1.24 SchedulingAlgorithm

Default value = default

Description: URL scheduling algorithm

9.1.25 SdqRetries

Default value = 5

9.1.26 SolrHost

Default value = NoDefaultValue

Description: Direct connection to Solr indexing

Used by: combineExport; MySQLhdb.pm.svn-base; combineExport.svn-base; MySQL-
hdb.pm

9.1.27 SummaryLength

Description: How long the summary should be. Use 0 to disable the summarization code

Used by: FromHTML.pm.svn-base; FromHTML.pm

9.1.28 SVMmodel

Default value = NoDefaultValue

Description: Filename for the SVM model

Used by: classifySVM.pm.svn-base; classifySVM.pm

45

9.1.29 UAtimeout

Default value = 30

Description: Time in seconds to wait for a server to respond

Used by: UA.pm; UA.pm.svn-base

9.1.30 UserAgentFollowRedirects

Description: User agent handles redirects (1) or treat redirects as new links (0)

Used by: UA.pm; UA.pm.svn-base

9.1.31 UserAgentGetIfModi�edSince

Default value = 1

Description: If we have seen this page before use Get-If-Modi�ed (1) or not (0)

Used by: UA.pm; UA.pm.svn-base

9.1.32 useTidy

Description: Use(1)/do not use(0) Tidy to clean the HTML before parsing it

Used by: FromHTML.pm.svn-base; FromHTML.pm

9.1.33 WaitIntervalExpirationGuaranteed

Default value = 315360000

Used by: UA.pm; UA.pm.svn-base

9.1.34 WaitIntervalHarvesterLockNotFound

Default value = 2592000

Used by: combine; combine.svn-base

9.1.35 WaitIntervalHarvesterLockNotModi�ed

Default value = 2592000

Used by: combine; combine.svn-base

9.1.36 WaitIntervalHarvesterLockRobotRules

Default value = 2592000

Used by: combine; combine.svn-base

46

9.1.37 WaitIntervalHarvesterLockSuccess

Default value = 1000000

Description: Time in seconds after succesfull download before allowing a page to be
downloaded again (around 11 days)

Used by: combine; combine.svn-base

9.1.38 WaitIntervalHarvesterLockUnavailable

Default value = 86400

Used by: combine; combine.svn-base

9.1.39 WaitIntervalHost

Default value = 60

Description: Minimum time between accesses to the same host. Must be positive

Used by: SD_SQL.pm; SD_SQL.pm.svn-base

9.1.40 WaitIntervalRrdLockDefault

Default value = 86400

Used by: RobotRules.pm.svn-base; RobotRules.pm

9.1.41 WaitIntervalRrdLockNotFound

Default value = 345600

Used by: RobotRules.pm.svn-base; RobotRules.pm

9.1.42 WaitIntervalRrdLockSuccess

Default value = 345600

Used by: RobotRules.pm.svn-base; RobotRules.pm

9.1.43 WaitIntervalSchedulerGetJcf

Default value = 20

Description: Time in seconds to wait before making a new reschedule if a reschedule
results in an empty ready que

Used by: combine; combine.svn-base

47

9.1.44 ZebraHost

Default value = NoDefaultValue

Description: Direct connection to Zebra indexing - for SearchEngine-in-a-box (default
no connection)

Used by: combineExport; MySQLhdb.pm.svn-base; combineExport.svn-base; MySQL-
hdb.pm

9.2 Complex con�guration variables

9.2.1 allow

Description: use either URL or HOST: (obs ':') to match regular expressions to
either the full URL or the HOST part of a URL.
Allow crawl of URLs or hostnames that matches these regular expressions

Used by: selurl.pm.svn-base; selurl.pm

9.2.2 binext

Description: Extensions of binary �les

Used by: UA.pm; UA.pm.svn-base

9.2.3 converters

Description: Con�gure which converters can be used to produce a XWI object
Format:
1 line per entry
each entry consists of 3 ';' separated �elds
Entries are processed in order and the �rst match is executed
external converters have to be found via PATH and executable to be considered a
match
the external converter command should take a �lename as parameter and convert
that �le
the result should be comming on STDOUT
mime-type ; External converter command ; Internal converter

Used by: UA.pm; combine; UA.pm.svn-base; combine.svn-base

9.2.4 exclude

Description: Exclude URLs or hostnames that matches these regular expressions
default: CGI and maps
default: binary �les
default: Unparsable documents
default: images
default: other binary formats
more excludes in the �le con�g_exclude (automatically updated by other programs)

Used by: selurl.pm.svn-base; selurl.pm

48

9.2.5 serveralias

Description: List of servernames that are aliases are in the �le ./con�g_serveralias
(automatically updated by other programs)
use one server per line
example
www.100topwetland.com www.100wetland.com
means that www.100wetland.com is replaced by www.100topwetland.com during
URL normalization

9.2.6 sessionids

Description: patterns to recognize and remove sessionids in URLs

9.2.7 url

Description: url is just a conatiner for all URL related con�guration patterns

Used by: selurl.pm.svn-base; Con�g.pm; Con�g.pm.svn-base; selurl.pm

10 Module dependences

10.1 Programs

10.1.1 Check_record.pm.svn-base

Uses: Combine::XWI; Combine::LoadTermList; Combine::utilPlugIn; Combine::Matcher;
Combine::Con�g;

Used by:

10.1.2 CleanXML2CanDoc.pm.svn-base

Uses: Alvis::Canonical;

Used by:

10.1.3 Con�g.pm.svn-base

Uses: Con�g::General; DBI;

Used by:

10.1.4 DataBase.pm.svn-base

Uses: Combine::MySQLhdb; Digest::MD5; Encode; Combine::selurl;

Used by:

49

10.1.5 FromHTML.pm.svn-base

Uses: Combine::Con�g; HTTP::Date; URI; URI::Escape; HTML::Entities; Encode; HTML::Tidy;
Combine::HTMLExtractor;

Used by:

10.1.6 FromImage.pm.svn-base

Uses: Image::ExifTool;

Used by:

10.1.7 HTMLExtractor.pm.svn-base

Uses: HTML::TokeParser; URI; Data::Dumper;

Used by:

10.1.8 LoadTermList.pm.svn-base

Uses: DBI; Lingua::Stem;

Used by:

10.1.9 LogSQL.pm.svn-base

Uses: Combine::Con�g;

Used by:

10.1.10 Matcher.pm.svn-base

Uses: HTML::Entities;

Used by:

10.1.11 MySQLhdb.pm.svn-base

Uses: Combine::XWI; HTTP::Date; Encode; Combine::Con�g; Combine::selurl; Com-
bine::Zebra; Combine::Solr; Combine::Zebra; Combine::Solr;

Used by:

10.1.12 PosCheck_record.pm.svn-base

Uses: Combine::LoadTermList; Combine::utilPlugIn; Combine::PosMatcher; Combine::Con�g;

Used by:

10.1.13 PosMatcher.pm.svn-base

Uses: Combine::XWI2XML; HTML::Entities;

Used by:

50

10.1.14 RobotRules.pm.svn-base

Uses: Combine::Con�g; Combine::UA;

Used by:

10.1.15 SD_SQL.pm.svn-base

Uses: Combine::Con�g; Combine::selurl; DBI;

Used by:

10.1.16 Solr.pm.svn-base

Uses: Combine::XWI2XML; XML::LibXSLT; XML::LibXML; LWP::UserAgent; HTTP::Request::Common;

Used by:

10.1.17 UA.pm.svn-base

Uses: Combine::Con�g; LWP::UserAgent; HTTP::Date;

Used by:

10.1.18 XWI.pm.svn-base

Uses: HTML::Entities; Combine::XWI;

Used by:

10.1.19 XWI2XML.pm.svn-base

Uses: Combine::XWI; Encode; Combine::Con�g; Compress::Zlib; MIME::Base64; Com-
bine::CleanXML2CanDoc;

Used by:

10.1.20 Zebra.pm.svn-base

Uses: Combine::XWI2XML; ZOOM;

Used by:

10.1.21 classifySVM.pm.svn-base

Uses: Combine::XWI; Combine::Con�g; Combine::MySQLhdb; Combine::utilPlugIn;

Used by:

10.1.22 combine

Uses: Combine::Con�g; Combine::XWI; Combine::UA; Combine::RobotRules; Combine::LogSQL;
Combine::FromHTML; Combine::FromImage; Combine::FromTeX; Combine::utilPlugIn;
Combine::DataBase; HTTP::Date; HTTP::Status; URI::URL; Getopt::Long; Com-
bine::SD_SQL;

51

10.1.23 combine.svn-base

Uses: Combine::Con�g; Combine::XWI; Combine::UA; Combine::RobotRules; Combine::LogSQL;
Combine::FromHTML; Combine::FromImage; Combine::FromTeX; Combine::utilPlugIn;
Combine::DataBase; HTTP::Date; HTTP::Status; URI::URL; Getopt::Long; Com-
bine::SD_SQL;

10.1.24 combineCountry.pl

Uses: Getopt::Long; Combine::Con�g; Combine::MySQLhdb;

10.1.25 combineCountry.pl.svn-base

Uses: Getopt::Long; Combine::Con�g; Combine::MySQLhdb;

10.1.26 combineCtrl

Uses: Getopt::Long; Combine::SD_SQL; Combine::Con�g;

10.1.27 combineCtrl.svn-base

Uses: Getopt::Long; Combine::SD_SQL; Combine::Con�g;

10.1.28 combineExport

Uses: Combine::MySQLhdb; Combine::Con�g; Combine::XWI2XML; DBI; HTTP::Date;
Encode; Getopt::Long; Alvis::Pipeline; Combine::Zebra; Combine::Solr; XML::LibXSLT;
XML::LibXML;

10.1.29 combineExport.svn-base

Uses: Combine::MySQLhdb; Combine::Con�g; Combine::XWI2XML; DBI; HTTP::Date;
Encode; Getopt::Long; Alvis::Pipeline; Combine::Zebra; Combine::Solr; XML::LibXSLT;
XML::LibXML;

10.1.30 combineINIT

Uses: Getopt::Long; Combine::Con�g; DBI; HTML::Tidy;

10.1.31 combineINIT.svn-base

Uses: Getopt::Long; Combine::Con�g; DBI; HTML::Tidy;

10.1.32 combineRank

Uses: Getopt::Long; Combine::Con�g; Combine::GraphAlgorithm; DBI;

10.1.33 combineRank.svn-base

Uses: Getopt::Long; Combine::Con�g; Combine::GraphAlgorithm; DBI;

52

10.1.34 combineReClassify

Uses: Combine::Con�g; Combine::LogSQL; Combine::DataBase; Combine::MySQLhdb;
Combine::XWI; DBI; Getopt::Long;

10.1.35 combineReClassify.svn-base

Uses: Combine::Con�g; Combine::LogSQL; Combine::DataBase; Combine::MySQLhdb;
Combine::XWI; DBI; Getopt::Long;

10.1.36 combineSVM

Uses: warnings; Combine::Con�g; Combine::selurl; Combine::MySQLhdb; Combine::utilPlugIn;
Getopt::Long; Algorithm::SVMLight;

10.1.37 combineSVM.svn-base

Uses: warnings; Combine::Con�g; Combine::selurl; Combine::MySQLhdb; Combine::utilPlugIn;
Getopt::Long; Algorithm::SVMLight;

10.1.38 combineUtil

Uses: Getopt::Long; Combine::Con�g; Combine::SD_SQL; Combine::MySQLhdb; Com-
bine::MySQLhdb; Net::hostent;

10.1.39 combineUtil.svn-base

Uses: Getopt::Long; Combine::Con�g; Combine::SD_SQL; Combine::MySQLhdb; Com-
bine::MySQLhdb; Net::hostent;

10.1.40 selurl.pm.svn-base

Uses: URI; Combine::Con�g;

Used by:

10.1.41 utilPlugIn.pm.svn-base

Uses: Combine::XWI; Combine::MySQLhdb; Combine::LoadTermList; Geo::IP; Locale::Country;
Lingua::Identify; Algorithm::SVMLight;

Used by:

10.2 Library modules

10.2.1 Check_record.pm

Uses: Combine::XWI; Combine::LoadTermList; Combine::utilPlugIn; Combine::Matcher;
Combine::Con�g;

Used by:

53

10.2.2 CleanXML2CanDoc.pm

Uses: Alvis::Canonical;

Used by: Combine::XWI2XML; Combine::.svn::text-base::XWI2XML.pm.svn-base;

10.2.3 Con�g.pm

Uses: Con�g::General; DBI;

Used by: combineExport; combineINIT; combineCtrl; combineReClassify; combineSVM;
combineRank; combineUtil; combineCountry.pl; combine; combineINIT.svn-base;
combineCtrl.svn-base; combineReClassify.svn-base; combineSVM.svn-base; combineRank.svn-
base; combineCountry.pl.svn-base; combineUtil.svn-base; combine.svn-base; combineExport.svn-
base; Combine::UA; Combine::Check_record; Combine::selurl; Combine::XWI2XML;
Combine::MySQLhdb; Combine::SD_SQL; Combine::FromHTML; Combine::PosCheck_record;
Combine::RobotRules; Combine::LogSQL; Combine::classifySVM; Combine::.svn::text-
base::UA.pm.svn-base; Combine::.svn::text-base::selurl.pm.svn-base; Combine::.svn::text-
base::XWI2XML.pm.svn-base; Combine::.svn::text-base::Check_record.pm.svn-base;
Combine::.svn::text-base::MySQLhdb.pm.svn-base; Combine::.svn::text-base::SD_SQL.pm.svn-
base; Combine::.svn::text-base::FromHTML.pm.svn-base; Combine::.svn::text-base::PosCheck_record.pm.svn-
base; Combine::.svn::text-base::RobotRules.pm.svn-base; Combine::.svn::text-base::LogSQL.pm.svn-
base; Combine::.svn::text-base::classifySVM.pm.svn-base;

10.2.4 DataBase.pm

Uses: Combine::MySQLhdb; Digest::MD5; Encode; Combine::selurl;

Used by: combineReClassify; combine; combineReClassify.svn-base; combine.svn-base;

10.2.5 FromHTML.pm

Uses: Combine::Con�g; HTTP::Date; URI; URI::Escape; HTML::Entities; Encode; HTML::Tidy;
Combine::HTMLExtractor;

Used by: combine; combine.svn-base;

10.2.6 FromImage.pm

Uses: Image::ExifTool;

Used by: combine; combine.svn-base;

10.2.7 HTMLExtractor.pm

Uses: HTML::TokeParser; URI; Data::Dumper;

Used by: Combine::FromHTML; Combine::.svn::text-base::FromHTML.pm.svn-base;

54

10.2.8 LoadTermList.pm

Uses: DBI; Lingua::Stem;

Used by: Combine::Check_record; Combine::utilPlugIn; Combine::PosCheck_record; Combine::.svn::text-
base::Check_record.pm.svn-base; Combine::.svn::text-base::utilPlugIn.pm.svn-base;
Combine::.svn::text-base::PosCheck_record.pm.svn-base;

10.2.9 LogSQL.pm

Uses: Combine::Con�g;

Used by: combineReClassify; combine; combineReClassify.svn-base; combine.svn-base;

10.2.10 Matcher.pm

Uses: HTML::Entities;

Used by: Combine::Check_record; Combine::.svn::text-base::Check_record.pm.svn-base;

10.2.11 MySQLhdb.pm

Uses: Combine::XWI; HTTP::Date; Encode; Combine::Con�g; Combine::selurl; Com-
bine::Zebra; Combine::Solr; Combine::Zebra; Combine::Solr;

Used by: combineExport; combineReClassify; combineSVM; combineUtil; combineUtil;
combineCountry.pl; combineReClassify.svn-base; combineSVM.svn-base; combineCountry.pl.svn-
base; combineUtil.svn-base; combineUtil.svn-base; combineExport.svn-base; Com-
bine::DataBase; Combine::utilPlugIn; Combine::classifySVM; Combine::.svn::text-base::DataBase.pm.svn-
base; Combine::.svn::text-base::utilPlugIn.pm.svn-base; Combine::.svn::text-base::classifySVM.pm.svn-
base;

10.2.12 PosCheck_record.pm

Uses: Combine::LoadTermList; Combine::utilPlugIn; Combine::PosMatcher; Combine::Con�g;

Used by:

10.2.13 PosMatcher.pm

Uses: Combine::XWI2XML; HTML::Entities;

Used by: Combine::PosCheck_record; Combine::.svn::text-base::PosCheck_record.pm.svn-
base;

10.2.14 RobotRules.pm

Uses: Combine::Con�g; Combine::UA;

Used by: combine; combine.svn-base;

55

10.2.15 SD_SQL.pm

Uses: Combine::Con�g; Combine::selurl; DBI;

Used by: combineCtrl; combineUtil; combine; combineCtrl.svn-base; combineUtil.svn-
base; combine.svn-base;

10.2.16 Solr.pm

Uses: Combine::XWI2XML; XML::LibXSLT; XML::LibXML; LWP::UserAgent; HTTP::Request::Common;

Used by: combineExport; combineExport.svn-base; Combine::MySQLhdb; Combine::MySQLhdb;
Combine::.svn::text-base::MySQLhdb.pm.svn-base; Combine::.svn::text-base::MySQLhdb.pm.svn-
base;

10.2.17 UA.pm

Uses: Combine::Con�g; LWP::UserAgent; HTTP::Date;

Used by: combine; combine.svn-base; Combine::RobotRules; Combine::.svn::text-base::RobotRules.pm.svn-
base;

10.2.18 XWI.pm

Uses: HTML::Entities; Combine::XWI;

Used by: combineReClassify; combine; combineReClassify.svn-base; combine.svn-base;
Combine::Check_record; Combine::XWI; Combine::XWI2XML; Combine::MySQLhdb;
Combine::utilPlugIn; Combine::classifySVM; Combine::.svn::text-base::XWI.pm.svn-
base; Combine::.svn::text-base::XWI2XML.pm.svn-base; Combine::.svn::text-base::Check_record.pm.svn-
base; Combine::.svn::text-base::MySQLhdb.pm.svn-base; Combine::.svn::text-base::utilPlugIn.pm.svn-
base; Combine::.svn::text-base::classifySVM.pm.svn-base;

10.2.19 XWI2XML.pm

Uses: Combine::XWI; Encode; Combine::Con�g; Compress::Zlib; MIME::Base64; Com-
bine::CleanXML2CanDoc;

Used by: combineExport; combineExport.svn-base; Combine::PosMatcher; Combine::Solr;
Combine::Zebra; Combine::.svn::text-base::PosMatcher.pm.svn-base; Combine::.svn::text-
base::Solr.pm.svn-base; Combine::.svn::text-base::Zebra.pm.svn-base;

10.2.20 Zebra.pm

Uses: Combine::XWI2XML; ZOOM;

Used by: combineExport; combineExport.svn-base; Combine::MySQLhdb; Combine::MySQLhdb;
Combine::.svn::text-base::MySQLhdb.pm.svn-base; Combine::.svn::text-base::MySQLhdb.pm.svn-
base;

56

10.2.21 classifySVM.pm

Uses: Combine::XWI; Combine::Con�g; Combine::MySQLhdb; Combine::utilPlugIn;

Used by:

10.2.22 selurl.pm

Uses: URI; Combine::Con�g;

Used by: combineSVM; combineSVM.svn-base; Combine::DataBase; Combine::MySQLhdb;
Combine::SD_SQL; Combine::.svn::text-base::DataBase.pm.svn-base; Combine::.svn::text-
base::MySQLhdb.pm.svn-base; Combine::.svn::text-base::SD_SQL.pm.svn-base;

10.2.23 utilPlugIn.pm

Uses: Combine::XWI; Combine::MySQLhdb; Combine::LoadTermList; Geo::IP; Locale::Country;
Lingua::Identify; Algorithm::SVMLight;

Used by: combineSVM; combine; combineSVM.svn-base; combine.svn-base; Combine::Check_record;
Combine::PosCheck_record; Combine::classifySVM; Combine::.svn::text-base::Check_record.pm.svn-
base; Combine::.svn::text-base::PosCheck_record.pm.svn-base; Combine::.svn::text-
base::classifySVM.pm.svn-base;

10.3 External modules

These are the (non base) Perl modules Combine depend on. The modules marked with a
'*' are not critical.

Algorithm::SVMLight

Algorithm::SVMLight *

Alvis::Canonical

Alvis::Pipeline *

Compress::Zlib

Config::General

DBI

Data::Dumper *

Digest::MD5

Encode

Geo::IP

Getopt::Long

HTML::Entities

HTML::Tidy *

HTML::TokeParser

HTTP::Date

HTTP::Request::Common

HTTP::Status

Image::ExifTool

LWP::UserAgent

Lingua::Identify

Lingua::Stem

57

Locale::Country

MIME::Base64

Net::hostent

URI

URI::Escape

URI::URL

XML::LibXML

XML::LibXSLT

ZOOM *

warnings

58

Part III

A APPENDIX

A.1 Simple installation test

The following simple script is available in the doc/InstallationTest.pl �le. It must be
run as 'root' and tests that basic functions of the Combine installation works.

Basicly it creates and initializes a new jobname, crawls one speci�c test page and
exports it as XML. This XML is then compared to a correct XML-record for that page.

A.1.1 InstallationTest.pl

use strict;

if ($> != 0) {

die("You have to run this test as root");

}

my $orec='';

while (<DATA>) { chop; $orec .= $_; }

$orec =~ s|<checkedDate>.*</checkedDate>||;

$orec =~ tr/\n\t //d;

my $olen=length($orec);

my $onodes=0;

while ($orec =~ m/</g) { $onodes++; }

print "ORIG Nodes=$onodes; Len=$olen\n";

our $jobname;

require './t/defs.pm';

system("combineINIT --jobname $jobname --topic /etc/combine/Topic_carnivor.txt > /dev/null");

system("combine --jobname $jobname --harvest http://combine.it.lth.se/CombineTests/InstallationTest.html");

open(REC,"combineExport --jobname $jobname |");

my $rec='';

while (<REC>) { chop; $rec .= $_; }

close(REC);

$rec =~ s|<checkedDate>.*</checkedDate>||;

$rec =~ tr/\n\t //d;

my $len=length($rec);

my $nodes=0;

while ($rec =~ m/</g) { $nodes++; }

print "NEW Nodes=$nodes; Len=$len\n";

my $OK=0;

59

if ($onodes == $nodes) { print "Number of XML nodes match\n"; }

else { print "Number of XML nodes does NOT match\n"; $OK=1; }

if ($olen == $len) {

print "Size of XML match\n";

} else {

$orec =~ s|<originalDocument.*</originalDocument>||s;

$rec =~ s|<originalDocument.*</originalDocument>||s;

if (length($orec) == length($rec)) { print "Size of XML match (after removal of 'originalDocument')\n";}

else { print "Size of XML does NOT match\n"; $OK=1; }

}

if (($OK == 0) && ($orec eq $rec)) { print "All tests OK\n"; }

else { print "There might be some problem with your Combine Installation\n"; }

__END__

<?xml version="1.0" encoding="UTF-8"?>

<documentCollection version="1.1" xmlns="http://alvis.info/enriched/">

<documentRecord id="80AC707F96BC57DFEF78C815F6FABD57">

<acquisition>

<acquisitionData>

<modifiedDate>2006-12-05 13:20:25</modifiedDate>

<checkedDate>2006-10-03 9:06:42</checkedDate>

<httpServer>Apache/1.3.29 (Debian GNU/Linux) PHP/4.3.3</httpServer>

<urls>

<url>http://combine.it.lth.se/CombineTests/InstallationTest.html</url>

</urls>

</acquisitionData>

<originalDocument mimeType="text/html" compression="gzip" encoding="base64" charSet="UTF-8">

H4sIAAAAAAAAA4WQsU7DMBCG9zzF4bmpBV2QcDKQVKJSKR2CEKObXBSrjm3sSyFvT0yCQGJgusG/

//u+E1flU1G9HrfwUD3u4fh8v98VwFLOXzYF52VVzg+b9Q3n2wPLE9FRr+NA2UyDFGnMdyaQ1FqS

sgYIA0FrPRS2PymDgs+hRPRIEozsMWNnHN+tbwKD2hpCQxkrpDfqYr0dAjgtDYUVlN4G9HIFB3RT

qMPAvns6Ipfi26Au09e5I61Gh78aCT+IR947qDvpA1I2UJvexg6+CJxsM0ad6/8kpkQiXB5XSWUC

BNsj/GGG4LBWrarhSw+0OiOIidZjmzGPeh15WL6ICS7zFUjT/AiuBXeRbwHj870/AeRYaTupAQAA

</originalDocument>

<canonicalDocument>

<section>

<section title="Installation test for Combine">

<section>Installation test for Combine</section>

<section>Contains some Carnivorous plant specific words like <ulink url="rel.html">Drosera </ulink>, and Nepenthes.</section></section></section></canonicalDocument>

<metaData>

<meta name="title">Installation test for Combine</meta>

<meta name="dc:format">text/html</meta>

<meta name="dc:format">text/html; charset=iso-8859-1</meta>

<meta name="dc:subject">Carnivorous plants</meta>

<meta name="dc:subject">Drosera</meta>

<meta name="dc:subject">Nepenthes</meta>

</metaData>

<links>

60

<outlinks>

<link type="a">

<anchorText>Drosera</anchorText>

<location>http://combine.it.lth.se/CombineTests/rel.html</location>

</link>

</outlinks>

</links>

<analysis>

<property name="topLevelDomain">se</property>

<property name="univ">1</property>

<property name="language">en</property>

<topic absoluteScore="1000" relativeScore="110526">

<class>ALL</class>

</topic>

<topic absoluteScore="375" relativeScore="41447">

<class>CP.Drosera</class>

<terms>drosera</terms>

</topic>

<topic absoluteScore="375" relativeScore="41447">

<class>CP.Nepenthes</class>

<terms>nepenthe</terms>

</topic>

<topic absoluteScore="250" relativeScore="27632">

<class>CP</class>

<terms>carnivorous plant</terms>

<terms>carnivor</terms>

</topic>

</analysis>

</acquisition>

</documentRecord>

</documentCollection>

A.2 Example topic �lter plug in

This example gives more details on how to write a topic �lter Plug-In.

A.2.1 classifyPlugInTemplate.pm

#Template for writing a classify PlugIn for Combine

#See documentation at http://combine.it.lth.se/documentation/

package classifyPlugInTemplate; #Change to your own module name

use Combine::XWI; #Mandatory

use Combine::Config; #Optional if you want to use the Combine configuration system

#API:

a subroutine named 'classify' taking a XWI-object as in parameter

61

return values: 0/1

0: record fails to meet the classification criteria, ie ignore this record

1: record is OK and should be stored in the database, and links followed by the crawler

sub classify {

my ($self,$xwi) = @_;

#utility routines to extract information from the XWI-object

#URL (can be several):

$xwi->url_rewind;

my $url_str="";

my $t;

while ($t = $xwi->url_get) { $url_str .= $t . ", "; }

#Metadata:

$xwi->meta_rewind;

my ($name,$content);

while (1) {

($name,$content) = $xwi->meta_get;

last unless $name;

next if ($name eq 'Rsummary');

next if ($name =~ /^autoclass/);

$meta .= $content . " ";

}

#Title:

$title = $xwi->title;

#Headings:

$xwi->heading_rewind;

my $this;

while (1) {

$this = $xwi->heading_get or last;

$head .= $this . " ";

}

#Text:

$this = $xwi->text;

if ($this) {

$text = $$this;

}

###############################

#Apply your classification algorithm here

assign $result a value (0/1)

###############################

#utility routines for saving detailed results (optional) in the database. These data may appear

in exported XML-records

62

#Topic takes 5 parameters

$xwi->topic_add(topic_class_notation, topic_absolute_score, topic_normalized_score, topic_terms, algorithm_id);

topic_class_notation, topic_terms, and algorithm_id are strings

max length topic_class_notation: 50, algorithm_id: 25

topic_absolute_score, and topic_normalized_score are integers

topic_normalized_score and topic_terms are optional and may be replaced with 0, '' respectively

#Analysis takes 2 parameters

$xwi->robot_add(name,value);

both are strings with max length name: 15, value: 20

return true (1) if you want to keep the record

otherwise return false (0)

return $result;

}

1;

A.3 Default con�guration �les

A.3.1 Global

#@#Default configuration values Combine system

#Direct connection to Zebra indexing - for SearchEngine-in-a-box (default no connection)

#@#ZebraHost = NoDefaultValue

ZebraHost =

#Direct connection to Solr indexing

#@#SolrHost = NoDefaultValue

SolrHost =

#Enable(1)/disable(0) fulltext-index in MySQL table search

MySQLfulltext = 0

#Use a proxy server if this is defined (default no proxy)

#@#httpProxy = NoDefaultValue

httpProxy =

#Enable(1)/disable(0) automatic recycling of new links

AutoRecycleLinks = 1

#User agent handles redirects (1) or treat redirects as new links (0)

UserAgentFollowRedirects = 0

#Number of pages to process before restarting the harvester

HarvesterMaxMissions = 500

63

#Logging level (0 (least) - 10 (most))

Loglev = 0

#Enable(1)/disable(0) analysis of genre, language

doAnalyse = 1

analysePlugin =

relTextPlugin =

#How long the summary should be. Use 0 to disable the summarization code

SummaryLength = 0

#Store(1)/do not store(0) the raw HTML in the database

saveHTML = 1

#Use(1)/do not use(0) Tidy to clean the HTML before parsing it

useTidy = 0

#Use(1)/do not use(0) OAI record status keeping in SQL database

doOAI = 1

#Extract(1)/do not extract(0) links from plain text

extractLinksFromText = 1

#Enable(1)/disable(0) topic classification (focused crawling)

#Generated by combineINIT based on --topic parameter

doCheckRecord = 0

#Which topic classification PlugIn module algorithm to use

#Combine::Check_record and Combine::PosCheck_record included by default

#NEW SVM classifier: Combine::classifySVM

#see classifyPlugInTemplate.pm and documentation to write your own

classifyPlugIn = Combine::Check_record

#Filename for the SVM model

#@#SVMmodel = NoDefaultValue

SVMmodel =

###Parameters for Std topic classification algorithm

###StdTitleWeight = 10 #

###StdMetaWeight = 4 #

###StdHeadingsWeight = 2 #

###StdCutoffRel = 10 #Class score must be above this % to be counted

###StdCutoffNorm = 0.2 #normalised cutoff for summed normalised score

###StdCutoffTot = 90 #non normalised cutoff for summed total score

###Parameters for Pos topic classification algorithm

###PosCutoffRel = 1 #Class score must be above this % to be counted

64

###PosCutoffNorm = 0.002 #normalised cutoff for summed normalised score

###PosCutoffTot = 1 #non normalised cutoff for summed total score

HarvestRetries = 5

SdqRetries = 5

#Maximum length of a URL; longer will be silently discarded

maxUrlLength = 250

#Time in seconds to wait for a server to respond

UAtimeout = 30

#If we have seen this page before use Get-If-Modified (1) or not (0)

UserAgentGetIfModifiedSince = 1

WaitIntervalExpirationGuaranteed = 315360000

WaitIntervalHarvesterLockNotFound = 2592000

WaitIntervalHarvesterLockNotModified = 2592000

WaitIntervalHarvesterLockRobotRules = 2592000

WaitIntervalHarvesterLockUnavailable = 86400

WaitIntervalRrdLockDefault = 86400

WaitIntervalRrdLockNotFound = 345600

WaitIntervalRrdLockSuccess = 345600

#Time in seconds after succesfull download before allowing a page to be downloaded again (around 11 days)

WaitIntervalHarvesterLockSuccess = 1000000

#Time in seconds to wait before making a new reschedule if a reschedule results in an empty ready que

WaitIntervalSchedulerGetJcf = 20

#Minimum time between accesses to the same host. Must be positive

WaitIntervalHost = 60

#URL scheduling algorithm

SchedulingAlgorithm = default

#Identifies MySQL database name, user and host

MySQLdatabase = NoDefaultValue

#Base directory for configuration files; initialized by Config.pm

#@#baseConfigDir = /etc/combine

#Directory for job specific configuration files; taken from 'jobname'

#@#configDir = NoDefaultValue

<binext>

#Extensions of binary files

arff

65

au

avi

class

exe

fig

gif

gz

hqx

ica

jpeg

jpg

mat

mdb

mov

mp3

mpeg

mpg

msi

pcx

pdb

psd

ram

rar

raw

rmd

rmx

sav

sdd

shar

tar

tga

tgz

tif

tiff

vo

wav

wmv

wmz

xbm

xpm

z

zip

</binext>

<converters>

#Configure which converters can be used to produce a XWI object

#Format:

1 line per entry

66

each entry consists of 3 ';' separated fields

#

#Entries are processed in order and the first match is executed

external converters have to be found via PATH and executable to be considered a match

the external converter command should take a filename as parameter and convert that file

the result should be comming on STDOUT

#

mime-type ; External converter command ; Internal converter

text/html ; ; GuessHTML

#Check this

www/unknown ; ; GuessHTML

text/plain ; ; GuessText

text/x-tex ; tth -g -w1 -r < ; TeXHTML

application/x-tex ; tth -g -w1 -r < ; TeXHTML

text/x-tex ; untex -a -e -giso ; TeXText

application/x-tex ; untex -a -e -giso ; TeXText

text/x-tex ; ; TeX

application/x-tex ; ; TeX

application/pdf ; pdftohtml -i -noframes -nomerge -nodrm -stdout ; HTML

application/pdf ; pstotext ; Text

application/postscript ; pstotext ; Text

application/msword ; antiword -t ; Text

application/vnd.ms-excel ; xlhtml -fw ; HTML

application/vnd.ms-powerpoint ; ppthtml ; HTML

application/rtf ; unrtf --nopict --html ; HTML

image/gif ; ; Image

image/jpeg ; ; Image

image/tiff ; ; Image

</converters>

<url>

<exclude>

#Exclude URLs or hostnames that matches these regular expressions

#Malformed hostnames

HOST: http:\/\/\.

HOST: \@

</exclude>

</url>

A.3.2 Job speci�c

#Please change

Operator-Email = "YourEmailAdress@YourDomain"

#Password not used yet. (Please change)

Password = "XxXxyYzZ"

67

<converters>

#Configure which converters can be used to produce a XWI object

#Format:

1 line per entry

each entry consists of 3 ';' separated fields

#

#Entries are processed in order and the first match is executed

external converters have to be found via PATH and executable to be considered a match

the external converter command should take a filename as parameter and convert that file

the result should be comming on STDOUT

#

mime-type ; External converter command ; Internal converter

application/pdf ; MYpdftohtml -i -noframes -nomerge -stdout ; HTML

</converters>

<url>

#List of servernames that are aliases are in the file ./config_serveralias

(automatically updated by other programs)

#use one server per line

#example

#www.100topwetland.com www.100wetland.com

means that www.100wetland.com is replaced by www.100topwetland.com during URL normalization

<serveralias>

<<include config_serveralias>>

</serveralias>

#use either URL or HOST: (obs ':') to match regular expressions to

either the full URL or the HOST part of a URL.

<allow>

#Allow crawl of URLs or hostnames that matches these regular expressions

HOST: .*$

</allow>

<exclude>

#Exclude URLs or hostnames that matches these regular expressions

default: CGI and maps

URL cgi-bin|htbin|cgi|\?|\.map$|_vti_

default: binary files

URL \.exe$|\.zip$|\.tar$|\.tgz$|\.gz$|\.hqx$|\.sdd$|\.mat$|\.raw$

URL \.EXE$|\.ZIP$|\.TAR$|\.TGZ$|\.GZ$|\.HQX$|\.SDD$|\.MAT$|\.RAW$

default: Unparsable documents

URL \.shar$|\.rmx$|\.rmd$|\.mdb$|\.sav$

URL \.SHAR$|\.RMX$|\.RMD$|\.MDB$|\.SAV$

default: images

68

URL \.gif$|\.jpg$|\.jpeg$|\.xpm$|\.tif$|\.tiff$|\.mpg$|\.mpeg$|\.mov$|\.wav$|\.au$|\.pcx$|\.xbm$|\.tga$|\.psd$

URL \.GIF$|\.JPG$|\.JPEG$|\.XPM$|\.TIF$|\.TIFF$|\.MPG$|\.MPEG$|\.MOV$|\.WAV$|\.AU$|\.PCX$|\.XBM$|\.TGA$|\.PSD$

default: other binary formats

URL \.pdb$|\.class$|\.ica$|\.ram$|\.wmz$|\.arff$|\.rar$|\.vo$|\.fig$|\.mp3$|\.wmv$|\.avi$|\.msi$

URL \.PDB$|\.CLASS$|\.ICA$|\.RAM$|\.WMZ$|\.ARFF$|\.RAR$|\.VO$|\.FIG$|\.MP3$|\.WMV$|\.AVI$|\.MSI$

#more excludes in the file config_exclude (automatically updated by other programs)

<<include config_exclude>>

</exclude>

<sessionids>

#patterns to recognize and remove sessionids in URLs

sessionid

lsessionid

jsessionid

SID

PHPSESSID

SessionID

BV_SessionID

</sessionids>

#url is just a conatiner for all URL related configuration patterns

</url>

A.4 SQL database

A.4.1 Create database

DROP DATABASE IF EXISTS $database;

CREATE DATABASE $database DEFAULT CHARACTER SET utf8;

USE $database;

A.4.2 Creating MySQL tables

All tables use UTF-8

Summary tables '^'=primary key, '*'=key:

TABLE hdb: recordid^, type, dates, server, title, ip, ...

TABLE links: recordid*, mynetlocid*, urlid*, netlocid*, linktype, anchor (netlocid for urlid!!)

TABLE meta: recordid*, name, value

TABLE html: recordid^, html

TABLE analys: recordid*, name, value

TABLE topic: recordid*, notation*, absscore, relscore, terms, algorithm

TABLE localtags: netlocid, urlid, name, value

TABLE search: recordid^, stext*

(TABLE netlocalias: netlocid*, netlocstr^)

(TABLE urlalias: urlid*, urlstr^)

TABLE topichierarchy: node^, father*, notation*, caption, level

69

TABLE netlocs: netlocid^, netlocstr^, retries

TABLE urls: netlocid*, urlid^, urlstr^, path

TABLE urldb: netlocid*, urlid^, urllock, harvest*, retries, netloclock

TABLE newlinks urlid^, netlocid

TABLE recordurl: recordid*, urlid^, lastchecked, md5*, fingerprint*^

TABLE admin: status, queid, schedulealgorithm

TABLE log: pid, id, date, message

TABLE que: queid^, urlid, netlocid

TABLE robotrules: netlocid*, rule, expire

TABLE oai: recordid, md5^, date*, status

TABLE exports: host, port, last

A.4.3 Data tables

CREATE TABLE hdb (

recordid int(11) NOT NULL default '0',

type varchar(50) default NULL,

title text,

mdate timestamp NOT NULL,

expiredate datetime default NULL,

length int(11) default NULL,

server varchar(50) default NULL,

etag varchar(25) default NULL,

nheadings int(11) default NULL,

nlinks int(11) default NULL,

headings mediumtext,

ip mediumblob,

PRIMARY KEY (recordid)

) ENGINE=MyISAM AVG_ROW_LENGTH = 20000 MAX_ROWS = 10000000 DEFAULT CHARACTER SET=utf8;

CREATE TABLE html (

recordid int(11) NOT NULL default '0',

html mediumblob,

PRIMARY KEY (recordid)

) ENGINE=MyISAM AVG_ROW_LENGTH = 20000 MAX_ROWS = 10000000 DEFAULT CHARACTER SET=utf8;

CREATE TABLE links (

recordid int(11) NOT NULL default '0',

mynetlocid int(11) default NULL,

urlid int(11) default NULL,

netlocid int(11) default NULL,

anchor text,

linktype varchar(50) default NULL,

KEY recordid (recordid),

KEY urlid (urlid),

KEY mynetlocid (mynetlocid),

KEY netlocid (netlocid)

) ENGINE=MyISAM MAX_ROWS = 1000000000 DEFAULT CHARACTER SET=utf8;

70

CREATE TABLE meta (

recordid int(11) NOT NULL default '0',

name varchar(50) default NULL,

value text,

KEY recordid (recordid)

) ENGINE=MyISAM MAX_ROWS = 1000000000 DEFAULT CHARACTER SET=utf8;

CREATE TABLE analys (

recordid int(11) NOT NULL default '0',

name varchar(100) NOT NULL,

value varchar(100),

KEY recordid (recordid)

) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

CREATE TABLE topic (

recordid int(11) NOT NULL default '0',

notation varchar(50) default NULL,

abscore int(11) default NULL,

relscore int(11) default NULL,

terms text default NULL,

algorithm varchar(25),

KEY notation (notation),

KEY recordid (recordid)

) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

CREATE TABLE localtags (

netlocid int(11) NOT NULL DEFAULT '0',

urlid int(11) NOT NULL DEFAULT '0',

name varchar(100) NOT NULL,

value varchar(100) NOT NULL,

PRIMARY KEY tag (netlocid,urlid,name(100),value(100))

) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

CREATE TABLE search (

recordid int(11) NOT NULL default '0',

stext mediumtext,

PRIMARY KEY (recordid),

FULLTEXT (stext)

) ENGINE=MyISAM AVG_ROW_LENGTH = 20000 MAX_ROWS = 10000000 DEFAULT CHARACTER SET=utf8;

A.4.4 Administrative tables

CREATE TABLE netlocalias (

netlocid int(11),

netlocstr varchar(150) NOT NULL,

KEY netlocid (netlocid),

PRIMARY KEY netlocstr (netlocstr)

) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

71

CREATE TABLE urlalias (

urlid int(11),

urlstr tinytext,

KEY urlid (urlid),

PRIMARY KEY urlstr (urlstr(255))

) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

topichierarchy have to initialized manually

CREATE TABLE topichierarchy (

node int(11) NOT NULL DEFAULT '0',

father int(11) DEFAULT NULL,

notation varchar(50) NOT NULL DEFAULT '',

caption varchar(255) DEFAULT NULL,

level int(11) DEFAULT NULL,

PRIMARY KEY node (node),

KEY father (father),

KEY notation (notation)

) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

CREATE TABLE netlocs (

netlocid int(11) NOT NULL auto_increment,

netlocstr varchar(150) NOT NULL,

retries int(11) NOT NULL DEFAULT 0,

PRIMARY KEY (netlocstr),

UNIQUE INDEX netlockid (netlocid)

) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

CREATE TABLE urls (

netlocid int(11) NOT NULL DEFAULT '0',

urlid int(11) NOT NULL auto_increment,

urlstr tinytext,

path tinytext,

PRIMARY KEY urlstr (urlstr(255)),

INDEX netlocid (netlocid),

UNIQUE INDEX urlid (urlid)

) ENGINE=MyISAM MAX_ROWS = 1000000000 DEFAULT CHARACTER SET=utf8;

CREATE TABLE urldb (

netlocid int(11) NOT NULL default '0',

netloclock int(11) NOT NULL default '0',

urlid int(11) NOT NULL default '0',

urllock int(11) NOT NULL default '0',

harvest tinyint(1) NOT NULL default '0',

retries int(11) NOT NULL default '0',

score int(11) NOT NULL default '0',

PRIMARY KEY (urlid),

KEY netlocid (netlocid),

72

KEY harvest (harvest)

) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

CREATE TABLE newlinks (

urlid int(11) NOT NULL,

netlocid int(11) NOT NULL,

PRIMARY KEY (urlid)

) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

CREATE TABLE recordurl (

recordid int(11) NOT NULL auto_increment,

urlid int(11) NOT NULL default '0',

lastchecked timestamp NOT NULL,

md5 char(32),

fingerprint char(50),

KEY md5 (md5),

KEY fingerprint (fingerprint),

PRIMARY KEY (urlid),

KEY recordid (recordid)

) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

CREATE TABLE admin (

status enum('closed','open','paused','stopped') default NULL,

schedulealgorithm enum('default','bigdefault','advanced') default 'default',

queid int(11) NOT NULL default '0'

) ENGINE=MEMORY DEFAULT CHARACTER SET=utf8;

advanced means use config variable SchedulingAlgorithm

Initialise admin to 'open' status

INSERT INTO admin VALUES ('open','default',0)

CREATE TABLE log (

pid int(11) NOT NULL default '0',

id varchar(50) default NULL,

date timestamp NOT NULL,

message varchar(255) default NULL

) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

CREATE TABLE que (

netlocid int(11) NOT NULL default '0',

urlid int(11) NOT NULL default '0',

queid int(11) NOT NULL auto_increment,

PRIMARY KEY (queid)

) ENGINE=MEMORY DEFAULT CHARACTER SET=utf8;

CREATE TABLE robotrules (

netlocid int(11) NOT NULL default '0',

expire int(11) NOT NULL default '0',

73

rule varchar(255) default '',

KEY netlocid (netlocid)

) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

CREATE TABLE oai (

recordid int(11) NOT NULL default '0',

md5 char(32),

date timestamp,

status enum('created', 'updated', 'deleted'),

PRIMARY KEY (md5),

KEY date (date)

) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

CREATE TABLE exports (

host varchar(30),

port int,

last timestamp DEFAULT '1999-12-31'

) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

A.4.5 Create user dbuser with required priviligies

GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,CREATE TEMPORARY TABLES,

ALTER,LOCK TABLES ON $database.* TO $dbuser;

GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,CREATE TEMPORARY TABLES,

ALTER,LOCK TABLES ON $database.* TO $dbuser\@localhost;

A.5 Manual pages

A.5.1 combineExport

NAME combineExport - export records in XML from Combine database

SYNOPSIS combineExport �jobname<name> [�pro�le alvis|dc|combine �charset utf8|isolatin
�number <n> �recordid <n> �md5 <MD5> �incremental �xsltscript ...]

OPTIONS AND ARGUMENTS jobname is used to �nd the appropriate con�gura-
tion (mandatory)

�pro�le

Three pro�les: alvis, dc, and combine . alvis and combine are similar XML formats.

'alvis' pro�le format is de�ned by the Alvis enriched document format DTD. It uses
charset UTF-8 per default.

'combine' is more compact with less redundancy.

'dc' is XML encoded Dublin Core data.

�charset

Selects a speci�c characterset from UTF-8, iso-latin-1 Overrides �pro�le settings.

74

�collapseinlinks

Skip inlinks with duplicate anchor-texts (ie just one inlink per unique anchor-text).

�nooutlinks

Do not include any outlinks in the exported records.

�ZebraIndex

ZebraIndex sends XML records directly to the Zebra server de�ned in Combine
con�guration variable 'ZebraHost'. It uses the default Zebra con�guration: pro-
�le=combine, nooutlinks, collapseinlinks and is compatible with the direct Zebra
indexing done during harvesting when 'ZebraHost' is de�ned in the Combine con�g-
uration. Requires that the Zebra server is running.

�SolrIndex

SolrIndex sends XML records directly to the Solr server de�ned in Combine con�g-
uration variable 'SolrHost'. It uses the default Solr con�guration: pro�le=combine,
nooutlinks, collapseinlinks and is compatible with the direct Solr indexing done dur-
ing harvesting when 'SolrHost' is de�ned in the Combine con�guration. Requires
that the Solr server is running.

�xsltscript

Generates records in Combine native format and converts them using this XSLT
script before output. See example scripts in /etc/combine/*.xsl

�number

the max number of records to be exported

�recordid

Export just the one record with this recordid

�md5

Export just the one record with this MD5 checksum

�pipehost, �pipeport

Speci�es the server-name and port to connect to and export data using the Alvis
Pipeline. Exports incrementally, ie all changes since last call to combineExport with
the same pipehost and pipeport.

�incremental

Exports incrementally, ie all changes since last call to combineExport using �incremental

DESCRIPTION

75

EXAMPLES

Export all records in Alvis XML-format to the file recs.xml

combineExport --jobname atest > recs.xml

Export 10 records to STDOUT

combineExport --jobname atest --number 10

Export all records in UTF-8 using Combine native format

combineExport --jobname atest --profile combine --charset utf8 > Zebrarecs.xml

Incremental export of all changes from last call using localhost at port 6234 using the

default profile (Alvis)

combineExport --jobname atest --pipehost localhost --pipeport 6234

SEE ALSO Combine con�guration documentation in /usr/share/doc/combine/.
Alvis XML schema (�pro�le alvis) at http://project.alvis.info/alvis_docs/enriched-document.xsd

AUTHOR Anders Ardö, <anders.ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2005 - 2006 Anders Ardö
This library is free software; you can redistribute it and/or modify it under the same

terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5
you may have available.

See the file LICENCE included in the distribution at

L<http://combine.it.lth.se/>

A.5.2 combineCtrl

NAME combineCtrl - controls a Combine crawling job

SYNOPSIS combineCtrl <action> �jobname <name>
where action can be one of start, kill, load, recyclelinks, reharvest, stat, howmany,

records, hosts, initMemoryTables, open, stop, pause, continue

OPTIONS AND ARGUMENTS jobname is used to �nd the appropriate con�gura-
tion (mandatory)

Actions starting/killing crawlers

start

takes an optional switch �harvesters n where n is the number of crawler processes
to start

kill

kills all active crawlers (and their associated combineRun monitors) for jobname

76

Actions loading or recycling URLs for crawling

load

Read a list of URLs from STDIN (one per line) and schedules them for crawling

recyclelinks

Schedule all newly found (since last invocation of recyclelinks) links in crawled pages
for crawling

reharvest

Schedules all pages in the database for crawling again (in order to check if they have
changed)

Actions for controlling scheduling of URLs

open

opens database for URL scheduling (maybe after a stop)

stop

stops URL scheduling

pause

pauses URL scheduling

continue

continues URL scheduling after a pause

Misc actions

stat

prints out rudimentary status of the ready queue (ie eligible now) of URLs to be
crawled

howmany

prints out rudimentary status of all URLs to be crawled

records

prints out the number of ercords in the SQL database

hosts

prints out rudimentary status of all hosts that have URLs to be crawled

initMemoryTables

initializes the administrative MySQL tables that are kept in memory

DESCRIPTION Implements various control functionality to administer a crawling job,
like starting and stoping crawlers, injecting URLs into the crawl queue, scheduling newly
found links for crawling, controlling scheduling, etc.

This is the preferred way of controling a crawl job.

77

EXAMPLES

echo 'http://www.yourdomain.com/' | combineCtrl load �jobname aatest

Seed the crawling job aatest with a URL

combineCtrl start �jobname aatest �harvesters 3

Start 3 crawling processes for job aatest

combineCtrl recyclelinks �jobname aatest

Schedule all new links crawling

combineCtrl stat �jobname aatest

See how many URLs that are eligible for crawling right now.

SEE ALSO combine
Combine con�guration documentation in /usr/share/doc/combine/.

AUTHOR Anders Ardö, <anders.ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2005 Anders Ardö
This library is free software; you can redistribute it and/or modify it under the same

terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5
you may have available.

See the �le LICENCE included in the distribution at http://combine.it.lth.se/

A.5.3 combineRun

NAME combineRun - starts, monitors and restarts a combine harvesting process

SYNOPSIS combineRun <pid�le> <combine command to run>

DESCRIPTION Starts a program and monitors it in order to make sure there is alsways
a copy running. If the program dies it will be restarted with the same parameters. Used
by combineCtrl when starting combine crawling.

SEE ALSO combineCtrl

AUTHOR Anders Ardö, <anders.ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2005 Anders Ardö
This library is free software; you can redistribute it and/or modify it under the same

terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5
you may have available.

See the �le LICENCE included in the distribution at http://combine.it.lth.se/

78

A.5.4 combineReClassify

NAME combineReClassify - main program that reanalyse records in a combine database
Algorithm: select relevant records based on cls parameter for each record get record

from database delete analyse infor from the record analyse the record if still_relevant save
in database

A.5.5 combineSVM

NAME combineSVM - generate a SVM model from good and bad examples

SYNOPSIS combineSVM �jobname <name> [�good <good-�le>] [�bad <bad-�le>]
[�train <model-�le>] [�help]

OPTIONS AND ARGUMENTS jobname is used to �nd the appropriate con�gura-
tion (mandatory)

good is the name of a �le with good URLs, one per line. Default 'goodURL.txt'
bad is the name of a �le with bad URLs, one per line. Default 'badURL.txt'
train is the name of the �le where the trained SVM model will be stored. Default

'SVMmodel.txt'

DESCRIPTION Takes two �les, one with positive examples (good) and one with nega-
tive examples (bad) and trains a SVM classi�er using these. The resulting model is stored
in the �le <train>.

The example �les should contain one URL per line and nothing else.

SEE ALSO combine
Combine con�guration documentation in /usr/share/doc/combine/.

AUTHOR Ignacio Garcia Dorado Anders Ardö, <anders.ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2008 Ignacio Garcia Dorado, Anders
Ardö

This library is free software; you can redistribute it and/or modify it under the same
terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5
you may have available.

See the �le LICENCE included in the distribution at http://combine.it.lth.se/

A.5.6 combineRank

NAME combineRank - calculates various Ranks for a Combine crawled database

SYNOPSIS combineRank <action> �jobname <name> �verbose
where action can be one of PageRank, PageRankBL, NetLocRank, and exportLink-

Graph. Results on STDOUT.

79

OPTIONS AND ARGUMENTS jobname is used to �nd the appropriate con�gura-
tion (mandatory)

verbose enables printing of ranks to STDOUT as SQL INSERT statements

Actions calculating variants of PageRank

PageRank

calculate standard PageRank

PageRankBL

calculate PageRanks with backlinks added for each link

NetLocRank

calculate SiteRank for each site and a local DocRank for documents within each site.
Global ranks are then calulated as SiteRank * DocRank

Actions exporting link data

exportLinkGraph

export linkgraph from Combine database

DESCRIPTION Implements calculation of di�erent variants of PageRank.
Results are written to STDOUT and can be huge for large databases.
Linkgraph is exported in ASCII as a sparse matrix, one row per line. First integer is

the ID (urlid) of a page with links. The rest of integers on the line are IDs for pages linked
to. Ie 121 5624 23416 51423 267178 means that page 121 links to pages 5624 23416 51423
267178

EXAMPLES

combineRank �jobname aatest �verbose PageRankBL

calculate PageRank with backlinks, result on STDOUT

combineRank �jobname aatest �verbose exportLinkGraph

export the linkgraph to STDOUT

SEE ALSO combine
Combine con�guration documentation in /usr/share/doc/combine/.

AUTHOR Anders Ardö, <anders.ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2006 Anders Ardö
This library is free software; you can redistribute it and/or modify it under the same

terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5
you may have available.

See the �le LICENCE included in the distribution at http://combine.it.lth.se/

80

A.5.7 combineUtil

NAME combineUtil - various operations on the Combine database

SYNOPSIS combineUtil <action> �jobname <name>
where action can be one of stats, termstat, classtat, sanity, all, serveralias, resetOAI,

restoreSanity, deleteNetLoc, deletePath, deleteMD5, deleteRecordid, addAlias

OPTIONS AND ARGUMENTS jobname is used to �nd the appropriate con�gura-
tion (mandatory)

Actions listing statistics

stats

Global statistics about the database

termstat

generates statistics about the terms from topic ontology matched in documents (can
be long output)

classtat

generates statistics about the topic classes assigned to documents

Actions for sanity controlls

sanity

Performs various sanity checks on the database

restoreSanity

Deletes records which sanity checks �nds insane

resetOAI

Removes all history (ie 'deleted' records) from the OAI table. This is done by re-
moving the OAI table and recreating it from the existing database.

Action all Does the actions: stats, sanity, classtat, termstat

Actions for deleting records

deleteNetLoc

Deletes all records matching the ','-separated list of server net-locations (server-names
optionally with port) in the switch �netlocstr. Net-locations can include SQL wild
cards ('%').

deletePath

Deletes all records matching the ','-separated list of URl paths (excluding net-locations)
in the switch �pathsubstr. Paths can include SQL wild cards ('%').

81

deleteMD5

Delete the record which has the MD5 in switch �md5

deleteRecordid

Delete the record which has the recordid in switch �recordid

Actions for handling server aliases

serverAlias

Detect server aliases in the current database and do a 'addAlias' on each detected
alias.

addAlias

Manually add a serveralias to the system. Requires switches �aliases and �preferred

DESCRIPTION Does various statistics generation as well as performing sanity checks
on the database

EXAMPLES

combineUtil termstat �jobname aatest

Generate matched term statistics

SEE ALSO combine
Combine con�guration documentation in /usr/share/doc/combine/.

AUTHOR Anders Ardö, <anders.ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2005 Anders Ardö
This library is free software; you can redistribute it and/or modify it under the same

terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5
you may have available.

See the �le LICENCE included in the distribution at http://combine.it.lth.se/

A.5.8 combine

NAME Combine - Focused Web crawler framework

SYNOPSIS combine �jobname <name> �logname <id>

OPTIONS AND ARGUMENTS jobname is used to �nd the appropriate con�gura-
tion (mandatory)

logname is used as identi�er in the log (in MySQL table log)

82

DESCRIPTION Does crawling, parsing, optional topic-check and stores in MySQL
database Normally started with the combineCtrl command. Brie�y it get's an URL from
the MySQL database, which acts as a common coordinator for a Combine job. The Web-
page is fetched, provided it passes the robot exclusion protocoll. The HTML ic cleaned
using Tidy and parsed into metadata, headings, text, links and link achors. Then it is
stored (optionaly provided a topic-check is passed to keep the crawler focused) in the
MySQL database in a structured form.

A simple work�ow for a trivial crawl job might look like:

Initialize database and configuration

combineINIT --jobname aatest

Enter some seed URLs from a file with a list of URLs

combineCtrl load --jobname aatest < seedURLs.txt

Start 2 crawl processes

combineCtrl start --jobname aatest --harvesters 2

For some time occasionally schedule new links for crawling

combineCtrl recyclelinks --jobname aatest

or look at the size of the ready queue

combineCtrl stat --jobname aatest

When satisfied kill the crawlers

combineCtrl kill --jobname aatest

Export data records in a highly structured XML format

combineExport --jobname aatest

For more complex jobs you have to edit the job con�guration �le.

SEE ALSO combineINIT, combineCtrl
Combine con�guration documentation in /usr/share/doc/combine/.

AUTHOR Anders Ardö, <anders.ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2005 Anders Ardö
This library is free software; you can redistribute it and/or modify it under the same

terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5
you may have available.

See the �le LICENCE included in the distribution at http://combine.it.lth.se/

A.5.9 Combine::PosMatcher

NAME PosMatcher

DESCRIPTION This a module in the DESIRE automatic classi�cation system. Copy-
right 1999.

Exported routines: 1. Fetching text: These routines all extract texts from a document
(either a Combine record, a Combine XWI datastructure or a WWW-page identi�ed by

83

a URL. They all return: $meta, $head, $text, $url, $title, $size $meta: Metadata from
document $head: Important text from document $text: Plain text from document $url:
URL of the document $title: HTML title of the document $size: The size of the document

Common input parameters:

$DoStem: 1=do stemming; 0=no stemming

$stoplist: object pointer to a LoadTermList object with a stoplist loaded

$simple: 1=do simple loading; 0=advanced loading (might induce errors)

getTextXWI

parameters: $xwi, $DoStem, $stoplist, $simple

$xwi is a Combine XWI datastructure

getTextURL

parameters: $url, $DoStem, $stoplist, $simple

$url is the URL for the page to extract text from

2. Term matcher accepts a text as a (reference) parameter, matches each term in Term
against text Matches are recorded in an associative array with class as key and summed
weight as value. Match parameters: $text, $termlist $text: text to match against the
termlist $termlist: object pointer to a LoadTermList object with a termlist loaded output:
%score: an associative array with classi�cations as keys and scores as values

3. Heuristics: sum scores down the classi�cation tree to the leafs cleanEiTree parame-
ters: %res - an associative array from Match output: %res - same array

AUTHOR Anders Ardö, <anders.ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2005,2006 Anders Ardö
This library is free software; you can redistribute it and/or modify it under the same

terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5
you may have available.

See the �le LICENCE included in the distribution at http://combine.it.lth.se/

A.5.10 Combine::selurl

NAME selurl - Normalise and validate URIs for harvesting

INTRODUCTION Selurl selects and normalises URIs on basis of both general prac-
tice (hostname lowercasing, portnumber substsitution etc.) and Combine-speci�c handling
(aplpying con�g_allow, con�g_exclude, con�g_serveralias and other relevant con�g set-
tings).

The Con�g settings catered for currently are:
maxUrlLength - the maximum length of an unnormalised URL allow - Perl regular to

identify allowed URLs exclude - Perl regular expressions to exclude URLs from harvesting
serveralias - Aliases of server names sessionids - List sessionid markers to be removed

A selurl object can hold a single URL and has methods to obtain its subparts as de�ned
in URI.pm, plus some methods to normalise and validate it in Combine context.

84

BUGS Currently, the only schemes supported are http, https and ftp. Others may
or may not work correctly. For one thing, we assume the scheme has an internet host-
name/port.

clone() will only return a copy of the real URI object, not a new selurl.
URI URI-escapes the strings fed into it by new() once. Existing percent signs in the

input are left untouched, which implicates that:
(a) there is no risk of double-encoding; and
(b) if the original contained an inadvertent sequence that could be interpreted as an es-

cape sequence, uri_unescape will not render the original input (e.g. url_with_%66_in_it
goes whoop) If you know that the original has not yet been escaped and wish to safeguard
potential percent signs, you'll have to escape them (and only them) once before you o�er
it to new().

A problem with URI is, that its object is not a hash we can piggyback our data on, so
I had to resort to AUTOLOAD to emulate inheritance. I �nd this ugly, but well, this *is*
Perl, so what'd you expect?

A.5.11 Combine::XWI

NAME XWI.pm - class for internal representation of a document record

SYNOPSIS

use Combine::XWI;

$xwi = new Combine::XWI;

#single value record variables

$xwi->server($server);

my $server = $xwi->server();

#original content

$xwi->content(\$html);

my $text = ${$xwi->content()};

#multiple value record variables

$xwi->meta_add($name1,$value1);

$xwi->meta_add($name2,$value2);

$xwi->meta_rewind;

my ($name,$content);

while (1) {

($name,$content) = $xwi->meta_get;

last unless $name;

}

DESCRIPTION Provides methods for storing and retrieving structured records repre-
senting crawled documents.

85

METHODS

new()

XXX($val) Saves $val using AUTOLOAD. Can later be retrieved, eg

$xwi->MyVar('My value');

$t = $xwi->MyVar;

will set $t to 'My value'

*_reset() Forget all values.

*_rewind() *_get will start with the �rst value.

*_add stores values into the datastructure

*_get retrieves values from the datastructure

meta_reset() / meta_rewind() / meta_add() / meta_get() Stores the con-
tent of Meta-tags

Takes/Returns 2 parameters: Name, Content

$xwi->meta_add($name1,$value1);

$xwi->meta_add($name2,$value2);

$xwi->meta_rewind;

my ($name,$content);

while (1) {

($name,$content) = $xwi->meta_get;

last unless $name;

}

xmeta_reset() / xmeta_rewind() / xmeta_add() / xmeta_get() Extended
information from Meta-tags. Not used.

url_remove() / url_reset() / url_rewind() / url_add() / url_get() Stores
all URLs (ie if multiple URLs for the same page) for this record

Takes/Returns 1 parameter: URL

heading_reset() / heading_rewind() / heading_add() / heading_get() Stores
headings from HTML documents

Takes/Returns 1 parameter: Heading text

link_reset() / link_rewind() / link_add() / link_get() Stores links from
documents

Takes/Returns 5 parameters: URL, netlocid, urlid, Anchor text, Link type

86

robot_reset() / robot_rewind() / robot_add() / robot_get() Stores calcu-
lated information, like genre, language, etc

Takes/Returns 2 parameters Name, Value. Both are strings with max length Name:
15, Value: 20

topic_reset() / topic_rewind() / topic_add() / topic_get() Stores result of
topic classi�cation.

Takes/Returns 5 parameters: Class, Absolute score, Normalized score, Terms, Algo-
rithm id

Class, Terms, and Algorithm id are strings with max lengths Class: 50, and Algorithm
id: 25

Absolute score, and Normalized score are integers
Normalized score and Terms are optional and may be replaced with 0, and � respectively

SEE ALSO Combine focused crawler main site http://combine.it.lth.se/

AUTHOR Yong Cao <tsao@munin.ub2.lu.se> v0.05 1997-03-13
Anders Ardö, <anders.ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2005,2006 Anders Ardö
This library is free software; you can redistribute it and/or modify it under the same

terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5
you may have available.

See the �le LICENCE included in the distribution at http://combine.it.lth.se/

A.5.12 Combine::Matcher

NAME Matcher

DESCRIPTION This a module in the DESIRE automatic classi�cation system. Copy-
right 1999. Modi�ed in the ALVIS project. Copyright 2004

Exported routines: 1. Fetching text: These routines all extract texts from a document
(either a Combine XWI datastructure or a WWW-page identi�ed by a URL. They all
return: $meta, $head, $text, $url, $title, $size $meta: Metadata from document $head:
Important text from document $text: Plain text from document $url: URL of the docu-
ment $title: HTML title of the document $size: The size of the document

Common input parameters:

$DoStem: 1=do stemming; 0=no stemming

$stoplist: object pointer to a LoadTermList object with a stoplist loaded

$simple: 1=do simple loading; 0=advanced loading (might induce errors)

getTextXWI

parameters: $xwi, $DoStem, $stoplist, $simple

$xwi is a Combine XWI datastructure

87

getTextURL

parameters: $url, $DoStem, $stoplist, $simple

$url is the URL for the page to extract text from

2. Term matcher accepts a text as a (reference) parameter, matches each term in Term
against text Matches are recorded in an associative array with class as key and summed
weight as value. Match parameters: $text, $termlist $text: text to match against the
termlist $termlist: object pointer to a LoadTermList object with a termlist loaded output:
%score: an associative array with classi�cations as keys and scores as values

AUTHOR Anders Ardö <anders.ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2005,2006 Anders Ardö
This library is free software; you can redistribute it and/or modify it under the same

terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5
you may have available.

See the �le LICENCE included in the distribution at http://combine.it.lth.se/

A.5.13 Combine::FromTeX

NAME Combine::FromTeX.pm - TeX parser in combine package

AUTHOR

Anders Ardø 2000-06-11

A.5.14 Combine::utilPlugIn

NAME utilPlugIn

DESCRIPTION Utilities for: * extracting text from XWI's * SVM classi�cation *
language and country identi�cation

AUTHOR Ignacio Garcia Dorado Anders Ardö <anders.ardo@eit.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2008 Ignacio Garcia Dorado, Anders
Ardö

This library is free software; you can redistribute it and/or modify it under the same
terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5
you may have available.

See the �le LICENCE included in the distribution at http://combine.it.lth.se/

A.5.15 Combine::SD_SQL

NAME SD_SQL

88

DESCRIPTION Reimplementation of sd.pl SD.pm and SDQ.pm using MySQL con-
tains both recyc and guard

Basic idea is to have a table (urldb) that contains most URLs ever inserted into the
system together with a lock (the guard function) and a boolean harvest-�ag. Also in this
table is the host part together with its lock. URLs are selected from this table based on
urllock, netloclock and harvest and inserted into a queue (table que). URLs from this
queue are then given out to harvesters. The queue is implemented as: # The admin
table can be used to generate sequence numbers like this: #mysql> update admin set
queid=LAST_INSERT_ID(queid+1); # and used to extract the next URL from the queue
#mysql> select host,url from que where queid=LAST_INSERT_ID(); # When the queue
is empty it is �lled from table urldb. Several di�erent algorithms can be used to �ll it
(round-robin, most urls, longest time since harvest, ...). Since the harvest-�ag and guard-
lock are not updated until the actual harvest is done it is OK to delete the queue and
regenerate it anytime.

###########################Questions, ideas, TODOs, etc #Split
table urldb into 2 tables - one for urls and one for hosts??? #Less e�cient when �lling que;
more e�cient when updating netloclock #Datastruktur TABLE hosts: create table hosts(
host varchar(50) not null default �, netloclock int not null, retries int not null default 0,
ant int not null default 0, primary key (host), key (ant), key (netloclock));

############# Handle to many retries?

algorithm takes an url from the host that was accessed longest ago

($hostid,$url)=SELECT host,url,id FROM hosts,urls WHERE

hosts.hostlock < UNIX_TIMESTAMP()

hosts.host=urls.host AND

urls.urllock < UNIX_TIMESTAMP() AND

urls.harvest=1 ORDER BY hostlock LIMIT 1;

algorithm takes an url from the host with most URLs

($hostid,$url)=SELECT host,url,id FROM hosts,urls WHERE

hosts.hostlock < UNIX_TIMESTAMP()

hosts.host=urls.host AND

urls.urllock < UNIX_TIMESTAMP() AND

urls.harvest=1 ORDER BY host.ant DESC LIMIT 1;

algorithm takes an url from any available host

($hostid,$url)=SELECT host,url,id FROM hosts,urls WHERE

hosts.hostlock < UNIX_TIMESTAMP()

hosts.host=urls.host AND

urls.urllock < UNIX_TIMESTAMP() AND

urls.harvest=1 LIMIT 1;

AUTHOR Anders Ardö <anders.ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2005,2006 Anders Ardö
This library is free software; you can redistribute it and/or modify it under the same

terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5
you may have available.

89

See the �le LICENCE included in the distribution at http://combine.it.lth.se/

A.5.16 Combine::FromHTML

NAME Combine::FromHTML.pm - HTML parser in combine package

AUTHOR Yong Cao <tsao@munin.ub2.lu.se> v0.06 1997-03-19 Anders Ardø 1998-07-
18 added <AREA ... HREF=link ...> �xed <A ... HREF=link ...> regexp to be more
general Anders Ardö 2002-09-20 added 'a' as a tag not to be replaced with space added
removal of Cntrl-chars and some punctuation marks from IP added <style>...</style> as
something to be removed before processing beefed up compression of sequences of blanks to
include \240 (non-breakable space) changed 'remove head' before text extraction to handle
multiline matching (which can be introduced by decoding html entities) added compress
blanks and remove CRs to metadata-content Anders Ardö 2004-04 Changed extraction
process dramatically

A.5.17 Combine::RobotRules

NAME RobotRules.pm

AUTHOR Anders Ardo version 1.0 2004-02-19

A.5.18 Combine::HTMLExtractor

NAME HTMLExtractor

DESCRIPTION Adopted from HTML::LinkExtractor - Extract links from an HTML
document by D.H (PodMaster)

AUTHOR Anders Ardo D.H (PodMaster)

LICENSE Copyright (c) 2003 by D.H. (PodMaster). All rights reserved.
This module is free software; you can redistribute it and/or modify it under the same

terms as Perl itself. The LICENSE �le contains the full text of the license.

A.5.19 Combine::LoadTermList

NAME LoadTermList

DESCRIPTION This a module in the DESIRE automatic classi�cation system. Copy-
right 1999.

LoadTermList - A class for loading and storing a stoplist with single words a termlist
with classi�cations and weights

90

Subroutines:

LoadStopWordList(StopWordListFileName)

loads a list of stopwords, one per line, from

the file StopWordListFileName.

EraseStopWordList

clears the stopword list

Subroutines:

LoadTermList(TermListFileName) - loads TermClass from file

LoadTermListStemmed(TermListFileName) - same plus stems terms

Input: A formatted term-list including weights and classifications

Format: <weight>: <term_reg_exp>=[<classification>,]+

weight can be a positive or negative number

term_reg_exp can be words, phrases, boolean expressions (with @and

as operator) on term_reg_exp or Perl regular expressions

AUTHOR Anders Ardö <Anders.Ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2005,2006 Anders Ardö
This library is free software; you can redistribute it and/or modify it under the same

terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5
you may have available.

See the �le LICENCE included in the distribution at http://combine.it.lth.se/

A.5.20 Combine::classifySVM

NAME classifySVM

DESCRIPTION Classi�cation plugin module using SVM (implementation SVMLight)
Uses SVM model loaded from �le pointed to by con�guration variable 'SVMmodel'

AUTHOR Ignacio Garcia Dorado Anders Ardö <anders.ardo@eit.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2008 Ignacio Garcia Dorado, Anders
Ardö

This library is free software; you can redistribute it and/or modify it under the same
terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5
you may have available.

See the �le LICENCE included in the distribution at http://combine.it.lth.se/

91

