
PMake — A Tutorial

Adam de Boor

PMake — A Tutorial
Adam de Boor
Revision: 44714
Copyright © 1988, 1989 Adam de Boor
Copyright © 1989 Berkeley Softworks
Copyright © 1988, 1989, 1993 The Regents of the University of California.

All rights reserved.

This code is derived from software contributed to Berkeley by Adam de Boor.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the fol-
lowing disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the University nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

Important

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILI-
TY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ii

https://svnweb.freebsd.org/changeset/doc/44714

Table of Contents
1. Introduction . 1
2. The Basics of PMake . 3

2.1. Dependency Lines . 3
2.2. Shell Commands . 5
2.3. Variables . 6
2.4. Comments . 9
2.5. Parallelism . 10
2.6. Writing and Debugging a Makefile . 10
2.7. Invoking PMake . 12
2.8. Summary . 15

3. Short-cuts and Other Nice Things . 17
3.1. Transformation Rules . 17
3.2. Including Other Makefiles . 20
3.3. Saving Commands . 20
3.4. Target Attributes . 21
3.5. Special Targets . 23
3.6. Modifying Variable Expansion . 25
3.7. More Exercises . 26

4. PMake for Gods . 27
4.1. Search Paths . 27
4.2. Archives and Libraries . 28
4.3. On the Condition... 29
4.4. A Shell is a Shell is a Shell . 31
4.5. Compatibility . 33
4.6. DEFCON 3 – Variable Expansion . 33
4.7. DEFCON 2 – The Number of the Beast . 33
4.8. DEFCON 1 – Imitation is the Not the Highest Form of Flattery . 33
4.9. The Way Things Work . 34

5. Answers to Exercises . 35
Glossary of Jargon . 37

Chapter 1. Introduction
PMake is a program for creating other programs, or anything else you can think of for it to do. The basic idea
behind PMake is that, for any given system, be it a program or a document or whatever, there will be some les
that depend on the state of other les (on when they were last modified). PMake takes these dependencies, which
you must specify, and uses them to build whatever it is you want it to build.

PMake is almost fully-compatible with Make, with which you may already be familiar. PMake's most important
feature is its ability to run several different jobs at once, making the creation of systems considerably faster. It also
has a great deal more functionality than Make.

This tutorial is divided into three main sections corresponding to basic, intermediate and advanced PMake usage.
If you already know Make well, you will only need to skim Chapter 2, The Basics of PMake (there are some aspects
of PMake that I consider basic to its use that did not exist in Make). Things in Chapter 3, Short-cuts and Other Nice
Things make life much easier, while those in Chapter 4, PMake for Gods are strictly for those who know what they are
doing. Glossary of Jargon has definitions for the jargon I use and Chapter 5, Answers to Exercises contains possible
solutions to the problems presented throughout the tutorial.

Chapter 2. The Basics of PMake
PMake takes as input a le that tells which les depend on which other les to be complete and what to do about
les that are “out-of-date”. This le is known as a “makefile” and is usually kept in the top-most directory of the
system to be built. While you can call the makefile anything you want, PMake will look for Makefile and makefile
(in that order) in the current directory if you do not tell it otherwise. To specify a different makefile, use the -
f ag, e.g.

% pmake -f program.mk

A makefile has four different types of lines in it:

• File dependency specifications

• Creation commands

• Variable assignments

• Comments, include statements and conditional directives

Any line may be continued over multiple lines by ending it with a backslash. The backslash, following newline and
any initial whitespace on the following line are compressed into a single space before the input line is examined
by PMake.

2.1. Dependency Lines
As mentioned in the introduction, in any system, there are dependencies between the les that make up the system.
For instance, in a program made up of several C source les and one header le, the C les will need to be re-
compiled should the header le be changed. For a document of several chapters and one macro le, the chapters
will need to be reprocessed if any of the macros changes. These are dependencies and are specified by means of
dependency lines in the makefile.

On a dependency line, there are targets and sources, separated by a one- or two-character operator. The targets
“depend” on the sources and are usually created from them. Any number of targets and sources may be specified
on a dependency line. All the targets in the line are made to depend on all the sources. Targets and sources need
not be actual les, but every source must be either an actual le or another target in the makefile. If you run out
of room, use a backslash at the end of the line to continue onto the next one.

Any le may be a target and any le may be a source, but the relationship between the two (or however many) is
determined by the “operator” that separates them. Three types of operators exist: one specifies that the datedness
of a target is determined by the state of its sources, while another specifies other les (the sources) that need to
be dealt with before the target can be re-created. The third operator is very similar to the rst, with the additional
condition that the target is out-of-date if it has no sources. These operations are represented by the colon, the
exclamation point and the double-colon, respectively, and are mutually exclusive. Their exact semantics are as
follows:

: If a colon is used, a target on the line is considered to
be “out-of-date” (and in need of creation) if any of the
sources has been modified more recently than the tar-
get, or the target does not exist. Under this operation,
steps will be taken to re-create the target only if it is
found to be out-of-date by using these two rules.

! If an exclamation point is used, the target will always
be re-created, but this will not happen until all of its

Dependency Lines

sources have been examined and re-created, if neces-
sary.

:: If a double-colon is used, a target is “out-of-date” if any
of the sources has been modified more recently than the
target, or the target does not exist, or the target has no
sources. If the target is out-of-date according to these
rules, it will be re-created. This operator also does some-
thing else to the targets, but I will go into that in the next
section (see Shell Commands).

Enough words, now for an example. Take that C program I mentioned earlier. Say there are three C les (a.c, b.c
and c.c) each of which includes the le defs.h. The dependencies between the les could then be expressed as
follows:

program : a.o b.o c.o

a.o b.o c.o : defs.h

a.o : a.c

b.o : b.c

c.o : c.c

You may be wondering at this point, where a.o, b.o and c.o came in and why they depend on defs.h and the
C les do not. The reason is quite simple: program cannot be made by linking together .c les—it must be made
from .o les. Likewise, if you change defs.h, it is not the .c les that need to be re-created, it is the .o les. If
you think of dependencies in these terms—which les (targets) need to be created from which les (sources)—you
should have no problems.

An important thing to notice about the above example, is that all the .o les appear as targets on more than one
line. This is perfectly all right: the target is made to depend on all the sources mentioned on all the dependency
lines. For example, a.o depends on both defs.h and a.c.

The order of the dependency lines in the makefile is important: the rst target on the rst dependency line in
the makefile will be the one that gets made if you do not say otherwise. That is why program comes rst in the
example makefile, above.

Both targets and sources may contain the standard C-Shell wildcard characters ({, }, *, ?, [, and]), but the non-
curly-brace ones may only appear in the final component (the le portion) of the target or source. The characters
mean the following things:

{} These enclose a comma-separated list of options and
cause the pattern to be expanded once for each element
of the list. Each expansion contains a different element.
For example, src/{whiffle,beep,fish}.c expands to
the three words src/whiffle.c , src/beep.c , and src/
fish.c . These braces may be nested and, unlike the oth-
er wildcard characters, the resulting words need not be
actual les. All other wildcard characters are expanded
using the les that exist when PMake is started.

* This matches zero or more characters of any sort. src/
*.c will expand to the same three words as above as long
as src contains those three les (and no other les that
end in .c).>

? Matches any single character.

4

Chapter 2. The Basics of PMake

[] This is known as a character class and contains either a
list of single characters, or a series of character ranges
(a-z, for example means all characters between a and z),
or both. It matches any single character contained in the
list. For example, [A-Za-z] will match all letters, while
[0123456789] will match all numbers.

2.2. Shell Commands
“Is not that nice,” you say to yourself, “but how are les actually ``re-created'', as he likes to spell it?” The re-
creation is accomplished by commands you place in the makefile. These commands are passed to the Bourne shell
(better known as /bin/sh) to be executed and are expected to do what is necessary to update the target le (PMake
does not actually check to see if the target was created. It just assumes it is there).

Shell commands in a makefile look a lot like shell commands you would type at a terminal, with one important
exception: each command in a makefile must be preceded by at least one tab.

Each target has associated with it a shell script made up of one or more of these shell commands. The creation script
for a target should immediately follow the dependency line for that target. While any given target may appear on
more than one dependency line, only one of these dependency lines may be followed by a creation script, unless
the :: operator was used on the dependency line.

If the double-colon was used, each dependency line for the target may be followed by a shell script. That script will
only be executed if the target on the associated dependency line is out-of-date with respect to the sources on that
line, according to the rules I gave earlier. I'll give you a good example of this later on.

To expand on the earlier makefile, you might add commands as follows:

program : a.o b.o c.o
 cc a.o b.o c.o -o program

a.o b.o c.o : defs.h
a.o : a.c
 cc -c a.c

b.o : b.c
 cc -c b.c

c.o : c.c
 cc -c c.c

Something you should remember when writing a makefile is, the commands will be executed if the target on the
dependency line is out-of-date, not the sources. In this example, the command cc -c a.c will be executed if a.o
is out-of-date. Because of the : operator, this means that should a.c or defs.h have been modified more recently
than a.o, the command will be executed (a.o will be considered out-of-date).

Remember how I said the only difference between a makefile shell command and a regular shell command was
the leading tab? I lied. There is another way in which makefile commands differ from regular ones. The rst two
characters after the initial whitespace are treated specially. If they are any combination of @ and -, they cause
PMake to do different things.

In most cases, shell commands are printed before they are actually executed. This is to keep you informed of what
is going on. If an @ appears, however, this echoing is suppressed. In the case of an echo command, say

echo Linking index

it would be rather silly to see

echo Linking index

5

Variables

Linking index

so PMake allows you to place an @ before the command to prevent the command from being printed:

@echo Linking index

The other special character is the -. In case you did not know, shell commands finish with a certain “exit status”.
This status is made available by the operating system to whatever program invoked the command. Normally this
status will be 0 if everything went ok and non-zero if something went wrong. For this reason, PMake will consider
an error to have occurred if one of the shells it invokes returns a non-zero status. When it detects an error, PMake's
usual action is to abort whatever it is doing and exit with a non-zero status itself (any other targets that were being
created will continue being made, but nothing new will be started. PMake will exit after the last job finishes). This
behavior can be altered, however, by placing a - at the front of a command (e.g. -mv index index.old), certain
command-line arguments, or doing other things, to be detailed later. In such a case, the non-zero status is simply
ignored and PMake keeps chugging along.

Because all the commands are given to a single shell to execute, such things as setting shell variables, changing
directories, etc., last beyond the command in which they are found. This also allows shell compound commands
(like for loops) to be entered in a natural manner. Since this could cause problems for some makefiles that depend
on each command being executed by a single shell, PMake has a -B ag (it stands for backwards-compatible) that
forces each command to be given to a separate shell. It also does several other things, all of which I discourage
since they are now old-fashioned.

A target's shell script is fed to the shell on its (the shell's) input stream. This means that any commands, such as
ci that need to get input from the terminal will not work right – they will get the shell's input, something they
probably will not nd to their liking. A simple way around this is to give a command like this:

ci $(SRCS) < /dev/tty

This would force the program's input to come from the terminal. If you cannot do this for some reason, your only
other alternative is to use PMake in its fullest compatibility mode. See “Compatibility” in Chapter 4, PMake for Gods.

2.3. Variables
PMake, like Make before it, has the ability to save text in variables to be recalled later at your convenience. Variables
in PMake are used much like variables in the shell and, by tradition, consist of all upper-case letters (you do not
have to use all upper-case letters. In fact there is nothing to stop you from calling a variable @^&$%$. Just tradition).
Variables are assigned-to using lines of the form:

VARIABLE = value

appended-to by:

VARIABLE += value

conditionally assigned-to (if the variable is not already defined) by:

VARIABLE ?= value

and assigned-to with expansion (i.e. the value is expanded (see below) before being assigned to the variable—useful
for placing a value at the beginning of a variable, or other things) by:

VARIABLE := value

Any whitespace before value is stripped o. When appending, a space is placed between the old value and the stu
being appended.

The final way a variable may be assigned to is using:

6

Chapter 2. The Basics of PMake

VARIABLE != shell-command

In this case, shell-command has all its variables expanded (see below) and is passed o to a shell to execute. The
output of the shell is then placed in the variable. Any newlines (other than the final one) are replaced by spaces
before the assignment is made. This is typically used to nd the current directory via a line like:

CWD != pwd

Note
This is intended to be used to execute commands that produce small amounts of output
(e.g. pwd). The implementation is less than intelligent and will likely freeze if you execute
something that produces thousands of bytes of output (8 Kb is the limit on many UNIX®
systems). The value of a variable may be retrieved by enclosing the variable name in paren-
theses or curly braces and preceding the whole thing with a dollar sign.

For example, to set the variable CFLAGS to the string -I/sprite/src/lib/libc -O, you would place a line:

CFLAGS = -I/sprite/src/lib/libc -O

in the makefile and use the word $(CFLAGS) wherever you would like the string -I/sprite/src/lib/libc -O
to appear. This is called variable expansion.

Note
Unlike Make, PMake will not expand a variable unless it knows the variable exists. E.g. if
you have a ${i} in a shell command and you have not assigned a value to the variable i
(the empty string is considered a value, by the way), where Make would have substituted
the empty string, PMake will leave the ${i} alone. To keep PMake from substituting for a
variable it knows, precede the dollar sign with another dollar sign (e.g. to pass ${HOME} to
the shell, use $${HOME}). This causes PMake, in effect, to expand the $ macro, which expands
to a single $.

For compatibility, Make's style of variable expansion will be used if you invoke PMake with any of the compati-
bility ags (-V, -B or -M. The -V ag alters just the variable expansion). There are two different times at which
variable expansion occurs: when parsing a dependency line, the expansion occurs immediately upon reading the
line. If any variable used on a dependency line is undefined, PMake will print a message and exit. Variables in shell
commands are expanded when the command is executed. Variables used inside another variable are expanded
whenever the outer variable is expanded (the expansion of an inner variable has no effect on the outer variable.
For example, if the outer variable is used on a dependency line and in a shell command, and the inner variable
changes value between when the dependency line is read and the shell command is executed, two different values
will be substituted for the outer variable).

Variables come in four flavors, though they are all expanded the same and all look about the same. They are (in
order of expanding scope):

• Local variables.

• Command-line variables.

• Global variables.

• Environment variables.

7

Local Variables

The classification of variables does not matter much, except that the classes are searched from the top (local) to
the bottom (environment) when looking up a variable. The rst one found wins.

2.3.1. Local Variables

Each target can have as many as seven local variables. These are variables that are only “visible” within that target's
shell script and contain such things as the target's name, all of its sources (from all its dependency lines), those
sources that were out-of-date, etc. Four local variables are defined for all targets. They are:

.TARGET
The name of the target.

.OODATE
The list of the sources for the target that were considered out-of-date. The order in the list is not guaranteed
to be the same as the order in which the dependencies were given.

.ALLSRC
The list of all sources for this target in the order in which they were given.

.PREFIX
The target without its suffix and without any leading path. E.g. for the target ../../lib/compat/fsRead.c ,
this variable would contain fsRead.

Three other local variables are set only for certain targets under special circumstances. These are the .IMPSRC,
.ARCHIVE, and .MEMBER variables. When they are set and how they are used is described later.

Four of these variables may be used in sources as well as in shell scripts. These are .TARGET, .PREFIX, .ARCHIVE
and .MEMBER. The variables in the sources are expanded once for each target on the dependency line, providing
what is known as a “dynamic source,” allowing you to specify several dependency lines at once. For example:

$(OBJS) : $(.PREFIX).c

will create a dependency between each object le and its corresponding C source le.

2.3.2. Command-line Variables

Command-line variables are set when PMake is rst invoked by giving a variable assignment as one of the argu-
ments. For example:

pmake "CFLAGS = -I/sprite/src/lib/libc -O"

would make CFLAGS be a command-line variable with the given value. Any assignments to CFLAGS in the makefile
will have no effect, because once it is set, there is (almost) nothing you can do to change a command-line variable
(the search order, you see). Command-line variables may be set using any of the four assignment operators, though
only = and ?= behave as you would expect them to, mostly because assignments to command-line variables are
performed before the makefile is read, thus the values set in the makefile are unavailable at the time. += is the
same as =, because the old value of the variable is sought only in the scope in which the assignment is taking
place (for reasons of efficiency that I will not get into here). := and ?= will work if the only variables used are
in the environment. != is sort of pointless to use from the command line, since the same effect can no doubt be
accomplished using the shell's own command substitution mechanisms (backquotes and all that).

2.3.3. Global Variables

Global variables are those set or appended-to in the makefile. There are two classes of global variables: those you
set and those PMake sets. As I said before, the ones you set can have any name you want them to have, except they
may not contain a colon or an exclamation point. The variables PMake sets (almost) always begin with a period
and always contain upper-case letters, only. The variables are as follows:

8

Chapter 2. The Basics of PMake

.PMAKE
The name by which PMake was invoked is stored in this variable. For compatibility, the name is also stored
in the MAKE variable.

.MAKEFLAGS
All the relevant ags with which PMake was invoked. This does not include such things as -f or variable
assignments. Again for compatibility, this value is stored in the MFLAGS variable as well.

Two other variables, .INCLUDES and .LIBS, are covered in the section on special targets in Chapter 3, Short-cuts
and Other Nice Things.

Global variables may be deleted using lines of the form:

#undef variable

The # must be the rst character on the line. Note that this may only be done on global variables.

2.3.4. Environment Variables

Environment variables are passed by the shell that invoked PMake and are given by PMake to each shell it invokes.
They are expanded like any other variable, but they cannot be altered in any way.

One special environment variable, PMAKE , is examined by PMake for command-line ags, variable assignments,
etc., it should always use. This variable is examined before the actual arguments to PMake are. In addition, all
ags given to PMake, either through the PMAKE variable or on the command line, are placed in this environment
variable and exported to each shell PMake executes. Thus recursive invocations of PMake automatically receive
the same ags as the top-most one.

Using all these variables, you can compress the sample makefile even more:

OBJS = a.o b.o c.o

program : $(OBJS)
 cc $(.ALLSRC) -o $(.TARGET)

$(OBJS) : defs.h

a.o : a.c
 cc -c a.c

b.o : b.c
 cc -c b.c

c.o : c.c
 cc -c c.c

2.4. Comments
Comments in a makefile start with a # character and extend to the end of the line. They may appear anywhere
you want them, except in a shell command (though the shell will treat it as a comment, too). If, for some reason,
you need to use the # in a variable or on a dependency line, put a backslash in front of it. PMake will compress
the two into a single #.

Note
This is not true if PMake is operating in full-compatibility mode).

9

Parallelism

2.5. Parallelism
PMake was specifically designed to re-create several targets at once, when possible. You do not have to do anything
special to cause this to happen (unless PMake was configured to not act in parallel, in which case you will have to
make use of the -L and -J ags (see below)), but you do have to be careful at times.

There are several problems you are likely to encounter. One is that some makefiles (and programs) are written in
such a way that it is impossible for two targets to be made at once. The program xstr, for example, always modifies
the les strings and x.c. There is no way to change it. Thus you cannot run two of them at once without something
being trashed. Similarly, if you have commands in the makefile that always send output to the same le, you will
not be able to make more than one target at once unless you change the le you use. You can, for instance, add a
$$$$ to the end of the le name to tack on the process ID of the shell executing the command (each $$ expands
to a single $, thus giving you the shell variable $$). Since only one shell is used for all the commands, you will get
the same le name for each command in the script.

The other problem comes from improperly-specified dependencies that worked in Make because of its sequential,
depth-rst way of examining them. While I do not want to go into depth on how PMake works (look in Chapter 4,
PMake for Gods if you are interested), I will warn you that les in two different levels of the dependency tree may
be examined in a different order in PMake than they were in Make. For example, given the makefile:

a :

b c b : d

PMake will examine the targets in the order c, d, b, a. If the makefile's author expected PMake to abort before
making c if an error occurred while making b, or if b needed to exist before c was made, (s)he will be sorely disap-
pointed. The dependencies are incomplete, since in both these cases, c would depend on b. So watch out.

Another problem you may face is that, while PMake is set up to handle the output from multiple jobs in a graceful
fashion, the same is not so for input. It has no way to regulate input to different jobs, so if you use the redirection
from /dev/tty I mentioned earlier, you must be careful not to run two of the jobs at once.

2.6. Writing and Debugging a Makefile
Now you know most of what is in a Makefile, what do you do next? There are two choices: use one of the uncom-
monly-available makefile generators or write your own makefile (I leave out the third choice of ignoring PMake
and doing everything by hand as being beyond the bounds of common sense).

When faced with the writing of a makefile, it is usually best to start from rst principles: just what are you trying
to do? What do you want the makefile finally to produce? To begin with a somewhat traditional example, let's say
you need to write a makefile to create a program, expr, that takes standard infix expressions and converts them
to prefix form (for no readily apparent reason). You have got three source les, in C, that make up the program:
main.c , parse.c , and output.c. Harking back to my pithy advice about dependency lines, you write the rst line
of the le:

expr : main.o parse.o output.o

because you remember expr is made from .o les, not .c les. Similarly for the .o les you produce the lines:

main.o : main.c

parse.o : parse.c

output.o : output.c

main.o parse.o output.o : defs.h

10

Chapter 2. The Basics of PMake

Great. You have now got the dependencies specified. What you need now is commands. These commands, remem-
ber, must produce the target on the dependency line, usually by using the sources you have listed. You remember
about local variables? Good, so it should come to you as no surprise when you write:

expr : main.o parse.o output.o
 cc -o $(.TARGET) $(.ALLSRC)

Why use the variables? If your program grows to produce postfix expressions too (which, of course, requires a
name change or two), it is one fewer place you have to change the le. You cannot do this for the object les,
however, because they depend on their corresponding source les and defs.h, thus if you said:

cc -c $(.ALLSRC)

you will get (for main.o):

cc -c main.c defs.h

which is wrong. So you round out the makefile with these lines:

main.o : main.c
 cc -c main.c

parse.o : parse.c
 cc -c parse.c

output.o : output.c
 cc -c output.c

The makefile is now complete and will, in fact, create the program you want it to without unnecessary compilations
or excessive typing on your part. There are two things wrong with it, however (aside from it being altogether too
long, something I will address in Chapter 3, Short-cuts and Other Nice Things):

1. The string main.o parse.o output.o is repeated twice, necessitating two changes when you add postfix (you
were planning on that, were not you?). This is in direct violation of de Boor's First Rule of writing makefiles:

Anything that needs to be written more than once should be placed in a variable. I cannot emphasize this enough
as being very important to the maintenance of a makefile and its program.

2. There is no way to alter the way compilations are performed short of editing the makefile and making the change
in all places. This is evil and violates de Boor's Second Rule, which follows directly from the rst:

Any ags or programs used inside a makefile should be placed in a variable so they may be changed, temporarily
or permanently, with the greatest ease.

The makefile should more properly read:

OBJS = main.o parse.o output.o

expr : $(OBJS)
 $(CC) $(CFLAGS) -o $(.TARGET) $(.ALLSRC)

main.o : main.c
 $(CC) $(CFLAGS) -c main.c

parse.o : parse.c
 $(CC) $(CFLAGS) -c parse.c

output.o : output.c
 $(CC) $(CFLAGS) -c output.c

$(OBJS) : defs.h

Alternatively, if you like the idea of dynamic sources mentioned in Section 2.3.1, “Local Variables”, you could write
it like this:

11

Invoking PMake

OBJS = main.o parse.o output.o

expr : $(OBJS)
 $(CC) $(CFLAGS) -o $(.TARGET) $(.ALLSRC)

$(OBJS) : $(.PREFIX).c defs.h
 $(CC) $(CFLAGS) -c $(.PREFIX).c

These two rules and examples lead to de Boor's First Corollary: Variables are your friends.

Once you have written the makefile comes the sometimes-difficult task of making sure the darn thing works. Your
most helpful tool to make sure the makefile is at least syntactically correct is the -n ag, which allows you to see if
PMake will choke on the makefile. The second thing the -n ag lets you do is see what PMake would do without it
actually doing it, thus you can make sure the right commands would be executed were you to give PMake its head.

When you nd your makefile is not behaving as you hoped, the rst question that comes to mind (after “What time
is it, anyway?”) is “Why not?” In answering this, two ags will serve you well: -d m and “-p 2”. The rst causes
PMake to tell you as it examines each target in the makefile and indicate why it is deciding whatever it is deciding.
You can then use the information printed for other targets to see where you went wrong. The “-p 2” ag makes
PMake print out its internal state when it is done, allowing you to see that you forgot to make that one chapter
depend on that le of macros you just got a new version of. The output from “-p 2” is intended to resemble closely
a real makefile, but with additional information provided and with variables expanded in those commands PMake
actually printed or executed.

Something to be especially careful about is circular dependencies. For example:

a : b

b : c d

d : a

In this case, because of how PMake works, c is the only thing PMake will examine, because d and a will effectively
fall o the edge of the universe, making it impossible to examine b (or them, for that matter). PMake will tell you
(if run in its normal mode) all the targets involved in any cycle it looked at (i.e. if you have two cycles in the graph
(naughty, naughty), but only try to make a target in one of them, PMake will only tell you about that one. You
will have to try to make the other to nd the second cycle). When run as Make, it will only print the rst target
in the cycle.

2.7. Invoking PMake
PMake comes with a wide variety of ags to choose from. They may appear in any order, interspersed with com-
mand-line variable assignments and targets to create. The ags are as follows:

-d what
This causes PMake to spew out debugging information that may prove useful to you. If you cannot figure out
why PMake is doing what it is doing, you might try using this ag. The what parameter is a string of single
characters that tell PMake what aspects you are interested in. Most of what I describe will make little sense
to you, unless you have dealt with Make before. Just remember where this table is and come back to it as you
read on. The characters and the information they produce are as follows:

a Archive searching and caching.

c Conditional evaluation.

d The searching and caching of directories.

j Various snippets of information related to the run-
ning of the multiple shells. Not particularly interest-
ing.

12

Chapter 2. The Basics of PMake

m The making of each target: what target is being exam-
ined; when it was last modified; whether it is out-of-
date; etc.

p Makefile parsing.

r Remote execution.

s The application of suffix-transformation rules. (See
Chapter 3, Short-cuts and Other Nice Things.)

t The maintenance of the list of targets.

v Variable assignment.

Of these all, the m and s letters will be most useful to you. If the -d is the final argument or the argument from
which it would get these key letters (see below for a note about which argument would be used) begins with
a –, all of these debugging ags will be set, resulting in massive amounts of output.

-f makefile
Specify a makefile to read different from the standard makefiles (Makefile or makefile). If makefile is -, PMake
uses the standard input. This is useful for making quick and dirty makefiles.

-h
Prints out a summary of the various ags PMake accepts. It can also be used to nd out what level of concur-
rency was compiled into the version of PMake you are using (look at -J and -L) and various other information
on how PMake was configured.

-i
If you give this ag, PMake will ignore non-zero status returned by any of its shells. It is like placing a - before
all the commands in the makefile.

-k
This is similar to -i in that it allows PMake to continue when it sees an error, but unlike -i, where PMake
continues blithely as if nothing went wrong, -k causes it to recognize the error and only continue work on
those things that do not depend on the target, either directly or indirectly (through depending on something
that depends on it), whose creation returned the error. The k is for “keep going”.

-l
PMake has the ability to lock a directory against other people executing it in the same directory (by means
of a le called LOCK.make that it creates and checks for in the directory). This is a Good Thing because two
people doing the same thing in the same place can be disastrous for the final product (too many cooks and all
that). Whether this locking is the default is up to your system administrator. If locking is on, -l will turn it
o, and vice versa. Note that this locking will not prevent you from invoking PMake twice in the same place–
if you own the lock le, PMake will warn you about it but continue to execute.

-m directory
Tells PMake another place to search for included makefiles via the <filename> style. Several -m options can
be given to form a search path. If this construct is used the default system makefile search path is completely
overridden.

-n
This ag tells PMake not to execute the commands needed to update the out-of-date targets in the makefile.
Rather, PMake will simply print the commands it would have executed and exit. This is particularly useful for
checking the correctness of a makefile. If PMake does not do what you expect it to, it is a good chance the
makefile is wrong.

-p number
This causes PMake to print its input in a reasonable form, though not necessarily one that would make im-
mediate sense to anyone but me. The number is a bitwise OR of 1 and 2, where 1 means it should print the

13

Invoking PMake

input before doing any processing and 2 says it should print it after everything has been re-created. Thus -
p 3 would print it twice-a-once before processing and once after (you might nd the difference between the
two interesting). This is mostly useful to me, but you may nd it informative in some bizarre circumstances.

-q
If you give PMake this ag, it will not try to re-create anything. It will just see if anything is out-of-date and
exit non-zero if so.

-r
When PMake starts up, it reads a default makefile that tells it what sort of system it is on and gives it some
idea of what to do if you do not tell it anything. I will tell you about it in Chapter 3, Short-cuts and Other Nice
Things. If you give this ag, PMake will not read the default makefile.

-s
This causes PMake to not print commands before they are executed. It is the equivalent of putting an “@”
before every command in the makefile.

-t
Rather than try to re-create a target, PMake will simply “touch” it so as to make it appear up-to-date. If the
target did not exist before, it will when PMake finishes, but if the target did exist, it will appear to have been
updated.

-v
Targets can still be created in parallel, however. This is the mode PMake will enter if it is invoked either as
smake or vmake .

-x
This tells PMake it is OK to export jobs to other machines, if they are available. It is used when running in Make
mode, as exporting in this mode tends to make things run slower than if the commands were just executed
locally.

-B
Forces PMake to be as backwards-compatible with Make as possible while still being itself. This includes:

• Executing one shell per shell command

• Expanding anything that looks even vaguely like a variable, with the empty string replacing any variable
PMake does not know.

• Refusing to allow you to escape a # with a backslash.

• Permitting undefined variables on dependency lines and conditionals (see below). Normally this causes
PMake to abort.

-C
This nullifies any and all compatibility mode ags you may have given or implied up to the time the -C is
encountered. It is useful mostly in a makefile that you wrote for PMake to avoid bad things happening when
someone runs PMake as make or has things set in the environment that tell it to be compatible. -C is not placed
in the PMAKE environment variable or the .MAKEFLAGS or MFLAGS global variables.

-D variable
Allows you to define a variable to have “1” as its value. The variable is a global variable, not a command-line
variable. This is useful mostly for people who are used to the C compiler arguments and those using condi-
tionals, which I will get into in Section 4.3, “On the Condition...”.

-I directory
Tells PMake another place to search for included makefiles. Yet another thing to be explained in Chapter 3,
Short-cuts and Other Nice Things (Section 3.2, “Including Other Makefiles”, to be precise).

14

Chapter 2. The Basics of PMake

-J number
Gives the absolute maximum number of targets to create at once on both local and remote machines.

-L number
This specifies the maximum number of targets to create on the local machine at once. This may be 0, though
you should be wary of doing this, as PMake may hang until a remote machine becomes available, if one is not
available when it is started.

-M
This is the ag that provides absolute, complete, full compatibility with Make. It still allows you to use all but
a few of the features of PMake, but it is non-parallel. This is the mode PMake enters if you call it make.

-P
When creating targets in parallel, several shells are executing at once, each wanting to write its own two
cents'-worth to the screen. This output must be captured by PMake in some way in order to prevent the screen
from being lled with garbage even more indecipherable than you usually see. PMake has two ways of doing
this, one of which provides for much cleaner output and a clear separation between the output of different
jobs, the other of which provides a more immediate response so one can tell what is really happening. The
former is done by notifying you when the creation of a target starts, capturing the output and transferring
it to the screen all at once when the job finishes. The latter is done by catching the output of the shell (and
its children) and buffering it until an entire line is received, then printing that line preceded by an indication
of which job produced the output. Since I prefer this second method, it is the one used by default. The rst
method will be used if you give the -P ag to PMake.

-V
As mentioned before, the -V ag tells PMake to use Make's style of expanding variables, substituting the empty
string for any variable it does not know.

-W
There are several times when PMake will print a message at you that is only a warning, i.e. it can continue
to work in spite of your having done something silly (such as forgotten a leading tab for a shell command).
Sometimes you are well aware of silly things you have done and would like PMake to stop bothering you. This
ag tells it to shut up about anything non-fatal.

-X
This ag causes PMake to not attempt to export any jobs to another machine.

Several ags may follow a single -. Those ags that require arguments take them from successive parameters. For
example:

pmake -fDnI server.mk DEBUG /chip2/X/server/include

will cause PMake to read server.mk as the input makefile, define the variable DEBUG as a global variable and look
for included makefiles in the directory /chip2/X/server/include .

2.8. Summary
A makefile is made of four types of lines:

• Dependency lines

• Creation commands

• Variable assignments

• Comments, include statements and conditional directives

A dependency line is a list of one or more targets, an operator (:, ::, or !), and a list of zero or more sources. Sources
may contain wildcards and certain local variables.

15

Summary

A creation command is a regular shell command preceded by a tab. In addition, if the rst two characters after the
tab (and other whitespace) are a combination of @ or -, PMake will cause the command to not be printed (if the
character is @) or errors from it to be ignored (if -). A blank line, dependency line or variable assignment terminates
a creation script. There may be only one creation script for each target with a : or ! operator.

Variables are places to store text. They may be unconditionally assigned-to using the = operator, appended-to
using the += operator, conditionally (if the variable is undefined) assigned-to with the ?= operator, and assigned-to
with variable expansion with the := operator. The output of a shell command may be assigned to a variable using
the != operator. Variables may be expanded (their value inserted) by enclosing their name in parentheses or curly
braces, preceded by a dollar sign. A dollar sign may be escaped with another dollar sign. Variables are not expanded
if PMake does not know about them. There are seven local variables: .TARGET, .ALLSRC, .OODATE, .PREFIX, .IMPSRC,
.ARCHIVE , and .MEMBER. Four of them (.TARGET, .PREFIX, .ARCHIVE , and .MEMBER) may be used to specify “dynamic
sources”. Variables are good. Know them. Love them. Live them.

Debugging of makefiles is best accomplished using the -n, -d m, and -p 2 ags.

16

Chapter 3. Short-cuts and Other
Nice Things
Based on what I have told you so far, you may have gotten the impression that PMake is just a way of storing away
commands and making sure you do not forget to compile something. Good. That is just what it is. However, the
ways I have described have been inelegant, at best, and painful, at worst. This chapter contains things that make the
writing of makefiles easier and the makefiles themselves shorter and easier to modify (and, occasionally, simpler).
In this chapter, I assume you are somewhat more familiar with Sprite (or UNIX®, if that is what you are using)
than I did in Chapter 2, The Basics of PMake, just so you are on your toes. So without further ado…

3.1. Transformation Rules
As you know, a le's name consists of two parts: a base name, which gives some hint as to the contents of the
le, and a suffix, which usually indicates the format of the le. Over the years, as UNIX® has developed, naming
conventions, with regard to suffixes, have also developed that have become almost as incontrovertible as Law. E.g.
a le ending in .c is assumed to contain C source code; one with a .o suffix is assumed to be a compiled, relocatable
object le that may be linked into any program; a le with a .ms suffix is usually a text le to be processed by
Tro with the -ms macro package, and so on. One of the best aspects of both Make and PMake comes from their
understanding of how the suffix of a le pertains to its contents and their ability to do things with a le based solely
on its suffix. This ability comes from something known as a transformation rule. A transformation rule specifies
how to change a le with one suffix into a le with another suffix.

A transformation rule looks much like a dependency line, except the target is made of two known suffixes stuck
together. Suffixes are made known to PMake by placing them as sources on a dependency line whose target is the
special target .SUFFIXES. E.g.:

.SUFFIXES : .o .c

.c.o :
 $(CC) $(CFLAGS) -c $(.IMPSRC)

The creation script attached to the target is used to trans form a le with the rst suffix (in this case, .c) into
a le with the second suffix (here, .o). In addition, the target inherits whatever attributes have been applied to
the transformation rule. The simple rule given above says that to transform a C source le into an object le, you
compile it using cc with the -c ag. This rule is taken straight from the system makefile. Many transformation
rules (and suffixes) are defined there, and I refer you to it for more examples (type pmake -h to nd out where it is).

There are several things to note about the transformation rule given above:

1. The .IMPSRC variable. This variable is set to the “implied source” (the le from which the target is being created;
the one with the rst suffix), which, in this case, is the .c le.

2. The CFLAGS variable. Almost all of the transformation rules in the system makefile are set up using variables
that you can alter in your makefile to tailor the rule to your needs. In this case, if you want all your C les to
be compiled with the -g ag, to provide information for dbx, you would set the CFLAGS variable to contain -g
(CFLAGS = -g) and PMake would take care of the rest.

To give you a quick example, the makefile in Section 2.3.4, “Environment Variables” could be changed to this:

OBJS = a.o b.o c.o
program : $(OBJS)
 $(CC) -o $(.TARGET) $(.ALLSRC)
$(OBJS) : defs.h

The transformation rule I gave above takes the place of the 6 lines 1:

1This is also somewhat cleaner, I think, than the dynamic source solution presented in Section 2.6, “Writing and Debugging a Makefile”.

Transformation Rules

a.o : a.c
 cc -c a.c
b.o : b.c
 cc -c b.c
c.o : c.c
 cc -c c.c

Now you may be wondering about the dependency between the .o and .c les – it is not mentioned anywhere in
the new makefile. This is because it is not needed: one of the effects of applying a transformation rule is the target
comes to depend on the implied source. That's why it is called the implied source.

For a more detailed example. Say you have a makefile like this:

a.out : a.o b.o
 $(CC) $(.ALLSRC)

and a directory set up like this:

total 4
-rw-rw-r-- 1 deboor 34 Sep 7 00:43 Makefile
-rw-rw-r-- 1 deboor 119 Oct 3 19:39 a.c
-rw-rw-r-- 1 deboor 201 Sep 7 00:43 a.o
-rw-rw-r-- 1 deboor 69 Sep 7 00:43 b.c

While just typing pmake will do the right thing, it is much more informative to type pmake -d s . This will show
you what PMake is up to as it processes the les. In this case, PMake prints the following:

Suff_FindDeps (a.out)
 using existing source a.o
 applying .o -> .out to "a.o"
Suff_FindDeps (a.o)
 trying a.c...got it
 applying .c -> .o to "a.c"
Suff_FindDeps (b.o)
 trying b.c...got it
 applying .c -> .o to "b.c"
Suff_FindDeps (a.c)
 trying a.y...not there
 trying a.l...not there
 trying a.c,v...not there
 trying a.y,v...not there
 trying a.l,v...not there
Suff_FindDeps (b.c)
 trying b.y...not there
 trying b.l...not there
 trying b.c,v...not there
 trying b.y,v...not there
 trying b.l,v...not there
--- a.o ---
cc -c a.c
--- b.o ---
cc -c b.c
--- a.out ---
cc a.o b.o

Suff_FindDeps is the name of a function in PMake that is called to check for implied sources for a target using
transformation rules. The transformations it tries are, naturally enough, limited to the ones that have been defined
(a transformation may be defined multiple times, by the way, but only the most recent one will be used). You
will notice, however, that there is a definite order to the suffixes that are tried. This order is set by the relative
positions of the suffixes on the .SUFFIXES line – the earlier a suffix appears, the earlier it is checked as the source
of a transformation. Once a suffix has been defined, the only way to change its position in the pecking order is to
remove all the suffixes (by having a .SUFFIXES dependency line with no sources) and redefine them in the order
you want. (Previously-defined transformation rules will be automatically redefined as the suffixes they involve
are re-entered.) Another way to affect the search order is to make the dependency explicit. In the above example,

18

Chapter 3. Short-cuts and Other Nice Things

a.out depends on a.o and b.o. Since a transformation exists from .o to .out, PMake uses that, as indicated by
the using existing source a.o message.

The search for a transformation starts from the suffix of the target and continues through all the defined trans-
formations, in the order dictated by the suffix ranking, until an existing le with the same base (the target name
minus the suffix and any leading directories) is found. At that point, one or more transformation rules will have
been found to change the one existing le into the target.

For example, ignoring what's in the system makefile for now, say you have a makefile like this:

.SUFFIXES : .out .o .c .y .l

.l.c :
 lex $(.IMPSRC)
 mv lex.yy.c $(.TARGET)
.y.c :
 yacc $(.IMPSRC)
 mv y.tab.c $(.TARGET)
.c.o :
 cc -c $(.IMPSRC)
.o.out :
 cc -o $(.TARGET) $(.IMPSRC)

and the single le jive.l . If you were to type pmake -rd ms jive.out , you would get the following output for
jive.out :

Suff_FindDeps (jive.out)
 trying jive.o...not there
 trying jive.c...not there
 trying jive.y...not there
 trying jive.l...got it
 applying .l -> .c to "jive.l"
 applying .c -> .o to "jive.c"
 applying .o -> .out to "jive.o"

and this is why: PMake starts with the target jive.out , figures out its suffix (.out) and looks for things it can
transform to a .out le. In this case, it only nds .o, so it looks for the le jive.o . It fails to nd it, so it looks for
transformations into a .o le. Again it has only one choice: .c. So it looks for jive.c and, as you know, fails to nd
it. At this point it has two choices: it can create the .c le from either a .y le or a .l le. Since .y came rst on
the .SUFFIXES line, it checks for jive.y rst, but can not nd it, so it looks for jive.l and, lo and behold, there
it is. At this point, it has defined a transformation path as follows:

.l -> .c -> .o -> .out

and applies the transformation rules accordingly. For completeness, and to give you a better idea of what PMake
actually did with this three-step transformation, this is what PMake printed for the rest of the process:

Suff_FindDeps (jive.o)
 using existing source jive.c
 applying .c -> .o to "jive.c"
Suff_FindDeps (jive.c)
 using existing source jive.l
 applying .l -> .c to "jive.l"
Suff_FindDeps (jive.l)
Examining jive.l...modified 17:16:01 Oct 4, 1987...up-to-date
Examining jive.c...non-existent...out-of-date
--- jive.c ---
lex jive.l
... meaningless lex output deleted ...
mv lex.yy.c jive.c
Examining jive.o...non-existent...out-of-date
--- jive.o ---
cc -c jive.c
Examining jive.out...non-existent...out-of-date
--- jive.out ---
cc -o jive.out jive.o

19

Including Other Makefiles

One final question remains: what does PMake do with targets that have no known suffix? PMake simply pretends
it actually has a known suffix and searches for transformations accordingly. The suffix it chooses is the source for
the .NULL target mentioned later. In the system makefile, .out is chosen as the “null suffix” because most people
use PMake to create programs. You are, however, free and welcome to change it to a suffix of your own choosing.
The null suffix is ignored, however, when PMake is in compatibility mode (see Chapter 4, PMake for Gods).

3.2. Including Other Makefiles
Just as for programs, it is often useful to extract certain parts of a makefile into another le and just include it in
other makefiles somehow. Many compilers allow you say something like:

#include "defs.h"

to include the contents of defs.h in the source le. PMake allows you to do the same thing for makefiles, with the
added ability to use variables in the filenames. An include directive in a makefile looks either like this:

#include <file>

or this:

#include "file"

The difference between the two is where PMake searches for the le: the rst way, PMake will look for the le only
in the system makefile directory (or directories) (to nd out what that directory is, give PMake the -h ag). The
system makefile directory search path can be overridden via the -m option. For les in double-quotes, the search
is more complex:

1. The directory of the makefile that's including the le.

2. The current directory (the one in which you invoked PMake).

3. The directories given by you using -I ags, in the order in which you gave them.

4. Directories given by .PATH dependency lines (see Chapter 4, PMake for Gods).

5. The system makefile directory.

in that order.

You are free to use PMake variables in the filename – PMake will expand them before searching for the le. You
must specify the searching method with either angle brackets or double-quotes outside of a variable expansion.
I.e. the following:

SYSTEM = <command.mk>

#include $(SYSTEM)

will not work.

3.3. Saving Commands
There may come a time when you will want to save certain commands to be executed when everything else is done.
For instance: you are making several different libraries at one time and you want to create the members in parallel.
Problem is, ranlib is another one of those programs that can not be run more than once in the same directory at
the same time (each one creates a le called __.SYMDEF into which it stus information for the linker to use. Two
of them running at once will overwrite each other's le and the result will be garbage for both parties). You might
want a way to save the ranlib commands til the end so they can be run one after the other, thus keeping them
from trashing each other's le. PMake allows you to do this by inserting an ellipsis (“...”) as a command between
commands to be run at once and those to be run later.

20

Chapter 3. Short-cuts and Other Nice Things

So for the ranlib case above, you might do this:

lib1.a : $(LIB1OBJS)
 rm -f $(.TARGET)
 ar cr $(.TARGET) $(.ALLSRC)
 ...
 ranlib $(.TARGET)

lib2.a : $(LIB2OBJS)
 rm -f $(.TARGET)
 ar cr $(.TARGET) $(.ALLSRC)
 ...
 ranlib $(.TARGET)

This would save both

ranlib $(.TARGET)

commands until the end, when they would run one after the other (using the correct value for the .TARGET variable,
of course).

Commands saved in this manner are only executed if PMake manages to re-create everything without an error.

3.4. Target Attributes
PMake allows you to give attributes to targets by means of special sources. Like everything else PMake uses, these
sources begin with a period and are made up of all upper-case letters. There are various reasons for using them,
and I will try to give examples for most of them. Others you will have to nd uses for yourself. Think of it as “an
exercise for the reader”. By placing one (or more) of these as a source on a dependency line, you are “marking the
target(s) with that attribute”. That is just the way I phrase it, so you know.

Any attributes given as sources for a transformation rule are applied to the target of the transformation rule when
the rule is applied.

.DONT-
CARE

If a target is marked with this attribute and PMake can not figure out how to create it, it will ignore this
fact and assume the le is not really needed or actually exists and PMake just can not nd it. This may
prove wrong, but the error will be noted later on, not when PMake tries to create the target so marked.
This attribute also prevents PMake from attempting to touch the target if it is given the -t ag.

.EXEC This attribute causes its shell script to be executed while having no effect on targets that depend on it.
This makes the target into a sort of subroutine. An example. Say you have some LISP les that need to
be compiled and loaded into a LISP process. To do this, you echo LISP commands into a le and execute
a LISP with this le as its input when everything is done. Say also that you have to load other les from
another system before you can compile your les and further, that you do not want to go through the
loading and dumping unless one of your les has changed. Your makefile might look a little bit like
this (remember, this is an educational example, and do not worry about the COMPILE rule, all will soon
become clear, grasshopper):

system : init a.fasl b.fasl c.fasl
 for i in $(.ALLSRC);
 do
 echo -n '(load "' >> input
 echo -n ${i} >> input
 echo '")' >> input
 done
 echo '(dump "$(.TARGET)")' >> input
 lisp < input

a.fasl : a.l init COMPILE
b.fasl : b.l init COMPILE
c.fasl : c.l init COMPILE
COMPILE : .USE

21

Target Attributes

 echo '(compile "$(.ALLSRC)")' >> input
init : .EXEC
 echo '(load-system)' > input

.EXEC sources, do not appear in the local variables of targets that depend on them (nor are they touched
if PMake is given the -t ag). Note that all the rules, not just that for system, include init as a source.
This is because none of the other targets can be made until init has been made, thus they depend on it.

.EXPORT This is used to mark those targets whose creation should be sent to another machine if at all possible.
This may be used by some exportation schemes if the exportation is expensive. You should ask your
system administrator if it is necessary.

.EX-
PORTSAME

Tells the export system that the job should be exported to a machine of the same architecture as the
current one. Certain operations (e.g. running text through nro) can be performed the same on any
architecture (CPU and operating system type), while others (e.g. compiling a program with cc) must be
performed on a machine with the same architecture. Not all export systems will support this attribute.

.IGNORE Giving a target the .IGNORE attribute causes PMake to ignore errors from any of the target's commands,
as if they all had - before them.

.IN-
VISIBLE

This allows you to specify one target as a source for another without the one affecting the other's local
variables. Useful if, say, you have a makefile that creates two programs, one of which is used to create
the other, so it must exist before the other is created. You could say

prog1 : $(PROG1OBJS) prog2 MAKEINSTALL
prog2 : $(PROG2OBJS) .INVISIBLE MAKEINSTALL

where MAKEINSTALL is some complex .USE rule (see below) that depends on the .ALLSRC variable con-
taining the right things. Without the .INVISIBLE attribute for prog2 , the MAKEINSTALL rule could not
be applied. This is not as useful as it should be, and the semantics may change (or the whole thing go
away) in the not-too-distant future.

.JOIN This is another way to avoid performing some operations in parallel while permitting everything else
to be done so. Specifically it forces the target's shell script to be executed only if one or more of the
sources was out-of-date. In addition, the target's name, in both its .TARGET variable and all the local
variables of any target that depends on it, is replaced by the value of its .ALLSRC variable. As an example,
suppose you have a program that has four libraries that compile in the same directory along with, and
at the same time as, the program. You again have the problem with ranlib that I mentioned earlier, only
this time it is more severe: you can not just put the ranlib o to the end since the program will need
those libraries before it can be re-created. You can do something like this:

program : $(OBJS) libraries
 cc -o $(.TARGET) $(.ALLSRC)

libraries : lib1.a lib2.a lib3.a lib4.a .JOIN
 ranlib $(.OODATE)

In this case, PMake will re-create the $(OBJS) as necessary, along with lib1.a , lib2.a , lib3.a and
lib4.a . It will then execute ranlib on any library that was changed and set program's .ALLSRC variable
to contain what's in $(OBJS) followed by “lib1.a lib2.a lib3.a lib4.a .” In case you are wondering,
it is called .JOIN because it joins together different threads of the “input graph” at the target marked
with the attribute. Another aspect of the .JOIN attribute is it keeps the target from being created if
the -t ag was given.

.MAKE The .MAKE attribute marks its target as being a recursive invocation of PMake. This forces PMake to
execute the script associated with the target (if it is out-of-date) even if you gave the -n or -t ag. By
doing this, you can start at the top of a system and type

pmake -n

and have it descend the directory tree (if your makefiles are set up correctly), printing what it would
have executed if you had not included the -n ag.

22

Chapter 3. Short-cuts and Other Nice Things

.NOEX-
PORT

If possible, PMake will attempt to export the creation of all targets to another machine (this depends on
how PMake was configured). Sometimes, the creation is so simple, it is pointless to send it to another
machine. If you give the target the .NOEXPORT attribute, it will be run loally, even if you have given
PMake the -L 0 ag.

.NOT-
MAIN

Normally, if you do not specify a target to make in any other way, PMake will take the rst target on the
rst dependency line of a makefile as the target to create. That target is known as the “Main Target” and
is labeled as such if you print the dependencies out using the -p ag. Giving a target this attribute tells
PMake that the target is definitely not the Main Target. This allows you to place targets in an included
makefile and have PMake create something else by default.

.PRECIOUSWhen PMake is interrupted (you type control-C at the keyboard), it will attempt to clean up after itself
by removing any half-made targets. If a target has the .PRECIOUS attribute, however, PMake will leave
it alone. An additional side effect of the :: operator is to mark the targets as .PRECIOUS .

.SILENT Marking a target with this attribute keeps its commands from being printed when they are executed,
just as if they had an @ in front of them.

.USE By giving a target this attribute, you turn it into PMake's equivalent of a macro. When the target is used
as a source for another target, the other target acquires the commands, sources and attributes (except
.USE) of the source. If the target already has commands, the .USE target's commands are added to the
end. If more than one .USE-marked source is given to a target, the rules are applied sequentially. The
typical .USE rule (as I call them) will use the sources of the target to which it is applied (as stored in
the .ALLSRC variable for the target) as its “arguments,” if you will. For example, you probably noticed
that the commands for creating lib1.a and lib2.a in the example in section Section 3.3, “Saving
Commands” were exactly the same. You can use the .USE attribute to eliminate the repetition, like so:

lib1.a : $(LIB1OBJS) MAKELIB
lib2.a : $(LIB2OBJS) MAKELIB

MAKELIB : .USE
 rm -f $(.TARGET)
 ar cr $(.TARGET) $(.ALLSRC)
 ...
 ranlib $(.TARGET)

Several system makefiles (not to be confused with The System Makefile) make use of these .USE rules
to make your life easier (they are in the default, system makefile directory...take a look). Note that the
.USE rule source itself (MAKELIB) does not appear in any of the targets's local variables. There is no
limit to the number of times I could use the MAKELIB rule. If there were more libraries, I could continue
with lib3.a : $(LIB3OBJS) MAKELIB and so on and so forth.

3.5. Special Targets
As there were in Make, so there are certain targets that have special meaning to PMake. When you use one on a
dependency line, it is the only target that may appear on the left-hand-side of the operator. As for the attributes
and variables, all the special targets begin with a period and consist of upper-case letters only. I will not describe
them all in detail because some of them are rather complex and I will describe them in more detail than you will
want in Chapter 4, PMake for Gods. The targets are as follows:

.BEGIN Any commands attached to this target are executed before anything else is done. You can use it for any
initialization that needs doing.

.DE-
FAULT

This is sort of a .USE rule for any target (that was used only as a source) that PMake can not figure out
any other way to create. It is only “sort of” a .USE rule because only the shell script attached to the
.DEFAULT target is used. The .IMPSRC variable of a target that inherits .DEFAULT's commands is set to
the target's own name.

.END This serves a function similar to .BEGIN , in that commands attached to it are executed once everything
has been re-created (so long as no errors occurred). It also serves the extra function of being a place on

23

Special Targets

which PMake can hang commands you put o to the end. Thus the script for this target will be executed
before any of the commands you save with the “...”.

.EXPORT The sources for this target are passed to the exportation system compiled into PMake. Some systems
will use these sources to configure themselves. You should ask your system administrator about this.

.IGNORE This target marks each of its sources with the .IGNORE attribute. If you do not give it any sources, then
it is like giving the -i ag when you invoke PMake – errors are ignored for all commands.

.IN-
CLUDES

The sources for this target are taken to be suffixes that indicate a le that can be included in a pro-
gram source le. The suffix must have already been declared with .SUFFIXES (see below). Any suffix
so marked will have the directories on its search path (see .PATH , below) placed in the .INCLUDES vari-
able, each preceded by a -I ag. This variable can then be used as an argument for the compiler in the
normal fashion. The .h suffix is already marked in this way in the system makefile. E.g. if you have

.SUFFIXES : .bitmap

.PATH.bitmap : /usr/local/X/lib/bitmaps

.INCLUDES : .bitmap

PMake will place -I/usr/local/X/lib/bitmaps in the .INCLUDES variable and you can then say

cc $(.INCLUDES) -c xprogram.c

(Note: the .INCLUDES variable is not actually lled in until the entire makefile has been read.)

.INTER-
RUPT

When PMake is interrupted, it will execute the commands in the script for this target, if it exists.

.LIBS This does for libraries what .INCLUDES does for include les, except the ag used is -L, as required
by those linkers that allow you to tell them where to nd libraries. The variable used is .LIBS . Be
forewarned that PMake may not have been compiled to do this if the linker on your system does not
accept the -L ag, though the .LIBS variable will always be defined once the makefile has been read.

.MAIN If you did not give a target (or targets) to create when you invoked PMake, it will take the sources of
this target as the targets to create.

.MAKE-
FLAGS

This target provides a way for you to always specify ags for PMake when the makefile is used. The
ags are just as they would be typed to the shell (except you can not use shell variables unless they are
in the environment), though the -f and -r ags have no effect.

.NULL This allows you to specify what suffix PMake should pretend a le has if, in fact, it has no known suffix.
Only one suffix may be so designated. The last source on the dependency line is the suffix that is used
(you should, however, only give one suffix...).

.PATH If you give sources for this target, PMake will take them as directories in which to search for les it
cannot nd in the current directory. If you give no sources, it will clear out any directories added to the
search path before. Since the effects of this all get very complex, we will leave it till Chapter 4, PMake
for Gods to give you a complete explanation.

.PATH-
suffix

This does a similar thing to .PATH , but it does it only for les with the given suffix. The suffix must have
been defined already. Look at Search Paths (Section 4.1, “Search Paths”) for more information.

.PRECIOUSSimilar to .IGNORE, this gives the .PRECIOUS attribute to each source on the dependency line, unless
there are no sources, in which case the .PRECIOUS attribute is given to every target in the le.

.RE-
CURSIVE

This target applies the .MAKE attribute to all its sources. It does nothing if you do not give it any sources.

.SHELL PMake is not constrained to only using the Bourne shell to execute the commands you put in the make-
file. You can tell it some other shell to use with this target. Check out “A Shell is a Shell is a Shell”
(Section 4.4, “A Shell is a Shell is a Shell”) for more information.

.SILENT When you use .SILENT as a target, it applies the .SILENT attribute to each of its sources. If there are
no sources on the dependency line, then it is as if you gave PMake the -s ag and no commands will
be echoed.

24

Chapter 3. Short-cuts and Other Nice Things

.SUF-
FIXES

This is used to give new le suffixes for PMake to handle. Each source is a suffix PMake should recognize.
If you give a .SUFFIXES dependency line with no sources, PMake will forget about all the suffixes it knew
(this also nukes the null suffix). For those targets that need to have suffixes defined, this is how you do it.

In addition to these targets, a line of the form:

attribute : sources

applies the attribute to all the targets listed as sources.

3.6. Modifying Variable Expansion
Variables need not always be expanded verbatim. PMake defines several modifiers that may be applied to a vari-
able's value before it is expanded. You apply a modifier by placing it after the variable name with a colon between
the two, like so:

${VARIABLE:modifier}

Each modifier is a single character followed by something specific to the modifier itself. You may apply as many
modifiers as you want – each one is applied to the result of the previous and is separated from the previous by
another colon.

There are seven ways to modify a variable's expansion, most of which come from the C shell variable modification
characters:

Mpattern
This is used to select only those words (a word is a series of characters that are neither spaces nor tabs) that
match the given pattern. The pattern is a wildcard pattern like that used by the shell, where * means 0 or
more characters of any sort; ? is any single character; [abcd] matches any single character that is either a,
b, c or d (there may be any number of characters between the brackets); [0-9] matches any single character
that is between 0 and 9 (i.e. any digit. This form may be freely mixed with the other bracket form), and \ is
used to escape any of the characters *, ?, [or :, leaving them as regular characters to match themselves in a
word. For example, the system makefile <makedepend.mk> uses $(CFLAGS:M-[ID]*) to extract all the -I and
-D ags that would be passed to the C compiler. This allows it to properly locate include les and generate
the correct dependencies.

Npattern
This is identical to :M except it substitutes all words that do not match the given pattern.

S/search-string/replacement-string/[g]
Causes the rst occurrence of search-string in the variable to be replaced by replacement-string, unless the g
ag is given at the end, in which case all occurrences of the string are replaced. The substitution is performed
on each word in the variable in turn. If search-string begins with a ^, the string must match starting at the
beginning of the word. If search-string ends with a $, the string must match to the end of the word (these
two may be combined to force an exact match). If a backslash precedes these two characters, however, they
lose their special meaning. Variable expansion also occurs in the normal fashion inside both the search-string
and the replacement-string, except that a backslash is used to prevent the expansion of a $, not another dol-
lar sign, as is usual. Note that search-string is just a string, not a pattern, so none of the usual regularexpres-
sion/wildcard characters have any special meaning save ^ and $. In the replacement string, the & character is
replaced by the search-string unless it is preceded by a backslash. You are allowed to use any character except
colon or exclamation point to separate the two strings. This so-called delimiter character may be placed in
either string by preceding it with a backslash.

T
Replaces each word in the variable expansion by its last component (its “tail”). For example, given:

OBJS = ../lib/a.o b /usr/lib/libm.a

25

More Exercises

TAILS = $(OBJS:T)

the variable TAILS would expand to a.o b libm.a.

H
This is similar to :T, except that every word is replaced by everything but the tail (the “head”). Using the same
definition of OBJS, the string $(OBJS:H) would expand to ../lib /usr/lib. Note that the final slash on the
heads is removed and anything without a head is replaced by the empty string.

E
:E replaces each word by its suffix (“extension”). So $(OBJS:E) would give you .o .a.

R
This replaces each word by everything but the suffix (the “root” of the word). $(OBJS:R) expands to ../lib/
a b /usr/lib/libm .

In addition, the System V style of substitution is also supported. This looks like:

$(VARIABLE:search-string=replacement)

It must be the last modifier in the chain. The search is anchored at the end of each word, so only suffixes or whole
words may be replaced.

3.7. More Exercises
Exercise 3.1

You have got a set programs, each of which is created from its own assembly-language source le (suffix .asm).
Each program can be assembled into two versions, one with error-checking code assembled in and one without.
You could assemble them into les with different suffixes (.eobj and .obj, for instance), but your linker only
understands les that end in .obj. To top it all o, the final executables must have the suffix .exe. How can you
still use transformation rules to make your life easier (Hint: assume the errorchecking versions have ec tacked
onto their prefix)?

Exercise 3.2

Assume, for a moment or two, you want to perform a sort of “indirection” by placing the name of a variable into
another one, then you want to get the value of the rst by expanding the second somehow. Unfortunately, PMake
does not allow constructs like:

$($(FOO))

What do you do? Hint: no further variable expansion is performed after modifiers are applied, thus if you cause a
$ to occur in the expansion, that is what will be in the result.

26

Chapter 4. PMake for Gods
This chapter is devoted to those facilities in PMake that allow you to do a great deal in a makefile with very little
work, as well as do some things you could not do in Make without a great deal of work (and perhaps the use of other
programs). The problem with these features, is they must be handled with care, or you will end up with a mess.

Once more, I assume a greater familiarity with UNIX® or Sprite than I did in the previous two chapters.

4.1. Search Paths
PMake supports the dispersal of les into multiple directories by allowing you to specify places to look for sources
with .PATH targets in the makefile. The directories you give as sources for these targets make up a “search path”.
Only those les used exclusively as sources are actually sought on a search path, the assumption being that any-
thing listed as a target in the makefile can be created by the makefile and thus should be in the current directory.

There are two types of search paths in PMake: one is used for all types of les (including included makefiles) and
is specified with a plain .PATH target (e.g. .PATH : RCS), while the other is specific to a certain type of le, as
indicated by the le's suffix. A specific search path is indicated by immediately following the .PATH with the suffix
of the le. For instance:

.PATH.h : /sprite/lib/include /sprite/att/lib/include

would tell PMake to look in the directories /sprite/lib/include and /sprite/att/lib/include for any les
whose suffix is .h.

The current directory is always consulted rst to see if a le exists. Only if it cannot be found there are the direc-
tories in the specific search path, followed by those in the general search path, consulted.

A search path is also used when expanding wildcard characters. If the pattern has a recognizable suffix on it, the
path for that suffix will be used for the expansion. Otherwise the default search path is employed.

When a le is found in some directory other than the current one, all local variables that would have contained
the target's name (.ALLSRC, and .IMPSRC) will instead contain the path to the le, as found by PMake. Thus if you
have a le ../lib/mumble.c and a makefile like this:

.PATH.c : ../lib
mumble : mumble.c
 $(CC) -o $(.TARGET) $(.ALLSRC)

the command executed to create mumble would be cc -o mumble ../lib/mumble.c. (as an aside, the command in
this case is not strictly necessary, since it will be found using transformation rules if it is not given. This is because
.out is the null suffix by default and a transformation exists from .c to .out. Just thought I would throw that in).
If a le exists in two directories on the same search path, the le in the rst directory on the path will be the one
PMake uses. So if you have a large system spread over many directories, it would behoove you to follow a naming
convention that avoids such conflicts.

Something you should know about the way search paths are implemented is that each directory is read, and its
contents cached, exactly once – when it is rst encountered – so any changes to the directories while PMake is
running will not be noted when searching for implicit sources, nor will they be found when PMake attempts to
discover when the le was last modified, unless the le was created in the current directory. While people have
suggested that PMake should read the directories each time, my experience suggests that the caching seldom caus-
es problems. In addition, not caching the directories slows things down enormously because of PMake's attempts
to apply transformation rules through non-existent les – the number of extra le-system searches is truly stag-
gering, especially if many les without suffixes are used and the null suffix is not changed from .out.

Archives and Libraries

4.2. Archives and Libraries
UNIX® and Sprite allow you to merge les into an archive using the ar command. Further, if the les are relocatable
object les, you can run ranlib on the archive and get yourself a library that you can link into any program you
want. The main problem with archives is they double the space you need to store the archived les, since there is
one copy in the archive and one copy out by itself. The problem with libraries is you usually think of them as -lm
rather than /usr/lib/libm.a and the linker thinks they are out-of-date if you so much as look at them.

PMake solves the problem with archives by allowing you to tell it to examine the les in the archives (so you can
remove the individual les without having to regenerate them later). To handle the problem with libraries, PMake
adds an additional way of deciding if a library is out-of-date: if the table of contents is older than the library, or
is missing, the library is out-of-date.

A library is any target that looks like -lname or that ends in a suffix that was marked as a library using the .LIBS tar-
get. .a is so marked in the system makefile. Members of an archive are specified as archive(member[member...]).
Thus libdix.a(window.o) specifies the le window.o in the archive libdix.a. You may also use wildcards to spec-
ify the members of the archive. Just remember that most the wildcard characters will only nd existing les. A le
that is a member of an archive is treated specially. If the le does not exist, but it is in the archive, the modification
time recorded in the archive is used for the le when determining if the le is out-of-date. When figuring out how
to make an archived member target (not the le itself, but the le in the archive – the archive(member) target),
special care is taken with the transformation rules, as follows:

• archive(member) is made to depend on member.

• The transformation from the member's suffix to the archive's suffix is applied to the archive(member) target.

• The archive(member)'s .TARGET variable is set to the name of the member if member is actually a target, or the
path to the member le if member is only a source.

• The .ARCHIVE variable for the archive(member) target is set to the name of the archive.

• The .MEMBER variable is set to the actual string inside the parentheses. In most cases, this will be the same as
the .TARGET variable.

• The archive(member)'s place in the local variables of the targets that depend on it is taken by the value of its
.TARGET variable.

Thus, a program library could be created with the following makefile:

.o.a :
 ...
 rm -f $(.TARGET:T)
OBJS = obj1.o obj2.o obj3.o
libprog.a : libprog.a($(OBJS))
 ar cru $(.TARGET) $(.OODATE)
 ranlib $(.TARGET)

This will cause the three object les to be compiled (if the corresponding source les were modified after the
object le or, if that does not exist, the archived object le), the out-of-date ones archived in libprog.a , a table of
contents placed in the archive and the newly-archived object les to be removed.

All this is used in the makelib.mk system makefile to create a single library with ease. This makefile looks like this:

#
Rules for making libraries. The object files that make up the library
are removed once they are archived.
#
To make several libraries in parallel, you should define the variable
"many_libraries". This will serialize the invocations of ranlib.
#
To use, do something like this:
#

28

Chapter 4. PMake for Gods

OBJECTS = <files in the library>
#
fish.a: fish.a($(OBJECTS)) MAKELIB
#
#

#ifndef _MAKELIB_MK
_MAKELIB_MK =

#include <po.mk>

.po.a .o.a :
 ...
 rm -f $(.MEMBER)

ARFLAGS ?= crl

#
Re-archive the out-of-date members and recreate the library's table of
contents using ranlib. If many_libraries is defined, put the ranlib
off til the end so many libraries can be made at once.
#
MAKELIB : .USE .PRECIOUS
 ar $(ARFLAGS) $(.TARGET) $(.OODATE)
#ifndef no_ranlib
ifdef many_libraries
 ...
endif many_libraries
 ranlib $(.TARGET)
#endif no_ranlib

#endif _MAKELIB_MK

4.3. On the Condition...
Like the C compiler before it, PMake allows you to configure the makefile, based on the current environment, using
conditional statements. A conditional looks like this:

#if boolean expression
lines
#elif another boolean expression
more lines
#else
still more lines
#endif

They may be nested to a maximum depth of 30 and may occur anywhere (except in a comment, of course). The
must the very rst character on the line.

Each boolean expression is made up of terms that look like function calls, the standard C boolean operators &&, ||,
and !, and the standard relational operators ==, !=, >, >=, <, and <=, with == and != being overloaded to allow string
comparisons as well. && represents logical AND; || is logical OR and ! is logical NOT. The arithmetic and string
operators take precedence over all three of these operators, while NOT takes precedence over AND, which takes
precedence over OR. This precedence may be overridden with parentheses, and an expression may be parenthe-
sized to your heart's content. Each term looks like a call on one of four functions:

make The syntax is make(target) where target is a target in the makefile. This is true if the given target was
specified on the command line, or as the source for a .MAIN target (note that the sources for .MAIN are
only used if no targets were given on the command line).

defined The syntax is defined(variable) and is true if variable is defined. Certain variables are defined in the
system makefile that identify the system on which PMake is being run.

29

On the Condition...

exists The syntax is exists(file) and is true if the le can be found on the global search path (i.e. that defined
by .PATH targets, not by .PATHsuffix targets).

empty This syntax is much like the others, except the string inside the parentheses is of the same form as you
would put between parentheses when expanding a variable, complete with modifiers and everything.
The function returns true if the resulting string is empty. An undefined variable in this context will
cause at the very least a warning message about a malformed conditional, and at the worst will cause
the process to stop once it has read the makefile. If you want to check for a variable being defined
or empty, use the expression: !defined(var) || empty(var) as the definition of || will prevent the
empty() from being evaluated and causing an error, if the variable is undefined. This can be used to see
if a variable contains a given word, for example: #if !empty(var:Mword)

The arithmetic and string operators may only be used to test the value of a variable. The lefthand side must contain
the variable expansion, while the righthand side contains either a string, enclosed in double-quotes, or a number.
The standard C numeric conventions (except for specifying an octal number) apply to both sides. E.g.:

#if $(OS) == 4.3

#if $(MACHINE) == "sun3"

#if $(LOAD_ADDR) > 0xc000

are all valid conditionals. In addition, the numeric value of a variable can be tested as a boolean as follows:

#if $(LOAD)

would see if LOAD contains a non-zero value and:

#if !$(LOAD)

would test if LOAD contains a zero value.

In addition to the bare #if, there are other forms that apply one of the rst two functions to each term. They are
as follows:

ifdef defined

ifndef !defined

ifmake make

ifnmake !make

There are also the “else if” forms: elif, elifdef , elifndef, elifmake, and elifnmake.

For instance, if you wish to create two versions of a program, one of which is optimized (the production version)
and the other of which is for debugging (has symbols for dbx), you have two choices: you can create two makefiles,
one of which uses the -g ag for the compilation, while the other uses the -O ag, or you can use another target
(call it debug) to create the debug version. The construct below will take care of this for you. I have also made it so
defining the variable DEBUG (say with pmake -D DEBUG) will also cause the debug version to be made.

#if defined(DEBUG) || make(debug)
CFLAGS += -g
#else
CFLAGS += -O
#endif

There are, of course, problems with this approach. The most glaring annoyance is that if you want to go from
making a debug version to making a production version, you have to remove all the object les, or you will get
some optimized and some debug versions in the same program. Another annoyance is you have to be careful not
to make two targets that “conflict” because of some conditionals in the makefile. For instance:

#if make(print)

30

Chapter 4. PMake for Gods

FORMATTER = ditroff -Plaser_printer
#endif
#if make(draft)
FORMATTER = nroff -Pdot_matrix_printer
#endif

would wreak havoc if you tried pmake draft print since you would use the same formatter for each target. As
I said, this all gets somewhat complicated.

4.4. A Shell is a Shell is a Shell
In normal operation, the Bourne Shell (better known as sh) is used to execute the commands to re-create targets.
PMake also allows you to specify a different shell for it to use when executing these commands. There are several
things PMake must know about the shell you wish to use. These things are specified as the sources for the .SHELL
target by keyword, as follows:

path=path
PMake needs to know where the shell actually resides, so it can execute it. If you specify this and nothing
else, PMake will use the last component of the path and look in its table of the shells it knows and use the
specification it nds, if any. Use this if you just want to use a different version of the Bourne or C Shell (yes,
PMake knows how to use the C Shell too).

name=name
This is the name by which the shell is to be known. It is a single word and, if no other keywords are specified
(other than path), it is the name by which PMake attempts to nd a specification for it (as mentioned above).
You can use this if you would just rather use the C Shell than the Bourne Shell (.SHELL: name=csh will do it).

quiet=echo-off command
As mentioned before, PMake actually controls whether commands are printed by introducing commands into
the shell's input stream. This keyword, and the next two, control what those commands are. The quiet key-
word is the command used to turn echoing o. Once it is turned o, echoing is expected to remain o until
the echo-on command is given.

echo=echo-on command
The command PMake should give to turn echoing back on again.

filter=printed echo-off command
Many shells will echo the echo-off command when it is given. This keyword tells PMake in what format the
shell actually prints the echo-off command. Wherever PMake sees this string in the shell's output, it will
delete it and any following whitespace, up to and including the next newline. See the example at the end of
this section for more details.

echoFlag=flag to turn echoing on
Unless a target has been marked .SILENT, PMake wants to start the shell running with echoing on. To do this,
it passes this ag to the shell as one of its arguments. If either this or the next ag begins with a -, the ags
will be passed to the shell as separate arguments. Otherwise, the two will be concatenated (if they are used
at the same time, of course).

errFlag=flag to turn error checking on
Likewise, unless a target is marked .IGNORE, PMake wishes error-checking to be on from the very start. To this
end, it will pass this ag to the shell as an argument. The same rules for an initial - apply as for the echoFlag .

check=command to turn error checking on
Just as for echo-control, error-control is achieved by inserting commands into the shell's input stream. This
is the command to make the shell check for errors. It also serves another purpose if the shell does not have
error-control as commands, but I will get into that in a minute. Again, once error checking has been turned
on, it is expected to remain on until it is turned o again.

31

A Shell is a Shell is a Shell

ignore=commandto turn error checking o
This is the command PMake uses to turn error checking o. It has another use if the shell does not do error-
control, but I will tell you about that...now.

hasErrCtl=yes or no
This takes a value that is either yes or no. Now you might think that the existence of the check and ignore key-
words would be enough to tell PMake if the shell can do error-control, but you would be wrong. If hasErrCtl
is yes, PMake uses the check and ignore commands in a straight-forward manner. If this is no, however, their
use is rather different. In this case, the check command is used as a template, in which the string %s is replaced
by the command that is about to be executed, to produce a command for the shell that will echo the command
to be executed. The ignore command is also used as a template, again with %s replaced by the command to be
executed, to produce a command that will execute the command to be executed and ignore any error it re-
turns. When these strings are used as templates, you must provide newline(s) (\n) in the appropriate place(s).

The strings that follow these keywords may be enclosed in single or double quotes (the quotes will be stripped
o) and may contain the usual C backslash-characters (\n is newline, \r is return, \b is backspace, \' escapes a
single-quote inside single-quotes, \" escapes a double-quote inside double-quotes). Now for an example.

This is actually the contents of the <shx.mk> system makefile, and causes PMake to use the Bourne Shell in such
a way that each command is printed as it is executed. That is, if more than one command is given on a line, each
will be printed separately. Similarly, each time the body of a loop is executed, the commands within that loop will
be printed, etc. The specification runs like this:

#
This is a shell specification to have the Bourne shell echo
the commands just before executing them, rather than when it reads
them. Useful if you want to see how variables are being expanded, etc.
#
.SHELL : path=/bin/sh \
 quiet="set -" \
 echo="set -x" \
 filter="+ set - " \
 echoFlag=x \
 errFlag=e \
 hasErrCtl=yes \
 check="set -e" \
 ignore="set +e"

It tells PMake the following:

• The shell is located in the le /bin/sh . It need not tell PMake that the name of the shell is sh as PMake can figure
that out for itself (it is the last component of the path).

• The command to stop echoing is set -.

• The command to start echoing is set -x.

• When the echo o command is executed, the shell will print + set - (The + comes from using the -x ag (rather
than the -v ag PMake usually uses)). PMake will remove all occurrences of this string from the output, so you
do not notice extra commands you did not put there.

• The ag the Bourne Shell will take to start echoing in this way is the -x ag. The Bourne Shell will only take its
ag arguments concatenated as its rst argument, so neither this nor the errFlag specification begins with a -.

• The ag to use to turn error-checking on from the start is -e.

• The shell can turn error-checking on and o, and the commands to do so are set +e and set -e, respectively.

I should note that this specification is for Bourne Shells that are not part of Berkeley UNIX®, as shells from Berkeley
do not do error control. You can get a similar effect, however, by changing the last three lines to be:

32

Chapter 4. PMake for Gods

hasErrCtl=no \
check="echo \"+ %s\"\n" \
ignore="sh -c '%s || exit 0\n"

This will cause PMake to execute the two commands:

echo "+ cmd"
sh -c 'cmd || true'

for each command for which errors are to be ignored. (In case you are wondering, the thing for ignore tells the shell
to execute another shell without error checking on and always exit 0, since the || causes the exit 0 to be executed
only if the rst command exited non-zero, and if the rst command exited zero, the shell will also exit zero, since
that is the last command it executed).

4.5. Compatibility
There are three (well, 3 1/2) levels of backwards-compatibility built into PMake. Most makefiles will need none
at all. Some may need a little bit of work to operate correctly when run in parallel. Each level encompasses the
previous levels (e.g. -B (one shell per command) implies -V). The three levels are described in the following three
sections.

4.6. DEFCON 3 – Variable Expansion
As noted before, PMake will not expand a variable unless it knows of a value for it. This can cause problems for
makefiles that expect to leave variables undefined except in special circumstances (e.g. if more ags need to be
passed to the C compiler or the output from a text processor should be sent to a different printer). If the variables
are enclosed in curly braces (${PRINTER}), the shell will let them pass. If they are enclosed in parentheses, however,
the shell will declare a syntax error and the make will come to a grinding halt.

You have two choices: change the makefile to define the variables (their values can be overridden on the command
line, since that is where they would have been set if you used Make, anyway) or always give the -V ag (this can
be done with the .MAKEFLAGS target, if you want).

4.7. DEFCON 2 – The Number of the Beast
Then there are the makefiles that expect certain commands, such as changing to a different directory, to not affect
other commands in a target's creation script. You can solve this is either by going back to executing one shell per
command (which is what the -B ag forces PMake to do), which slows the process down a good bit and requires you
to use semicolons and escaped newlines for shell constructs, or by changing the makefile to execute the offending
command(s) in a subshell (by placing the line inside parentheses), like so:

install :: .MAKE
 (cd src; $(.PMAKE) install)
 (cd lib; $(.PMAKE) install)
 (cd man; $(.PMAKE) install)

This will always execute the three makes (even if the -n ag was given) because of the combination of the ::
operator and the .MAKE attribute. Each command will change to the proper directory to perform the install, leaving
the main shell in the directory in which it started.

4.8. DEFCON 1 – Imitation is the Not the Highest Form of Flattery
The final category of makefile is the one where every command requires input, the dependencies are incompletely
specified, or you simply cannot create more than one target at a time, as mentioned earlier. In addition, you may

33

The Way Things Work

not have the time or desire to upgrade the makefile to run smoothly with PMake. If you are the conservative sort,
this is the compatibility mode for you. It is entered either by giving PMake the -M ag (for Make), or by executing
PMake as make. In either case, PMake performs things exactly like Make (while still supporting most of the nice
new features PMake provides). This includes:

• No parallel execution.

• Targets are made in the exact order specified by the makefile. The sources for each target are made in strict
left-to-right order, etc.

• A single Bourne shell is used to execute each command, thus the shell's $$ variable is useless, changing direc-
tories does not work across command lines, etc.

• If no special characters exist in a command line, PMake will break the command into words itself and execute
the command directly, without executing a shell rst. The characters that cause PMake to execute a shell are: #,
=, |, ^, (,), {, }, ;, &, >, <, *, ?, [,], :, $, `, and \. You should notice that these are all the characters that are given
special meaning by the shell (except ' and , which PMake deals with all by its lonesome).

• The use of the null suffix is turned o.

4.9. The Way Things Work
When PMake reads the makefile, it parses sources and targets into nodes in a graph. The graph is directed only
in the sense that PMake knows which way is up. Each node contains not only links to all its parents and children
(the nodes that depend on it and those on which it depends, respectively), but also a count of the number of its
children that have already been processed.

The most important thing to know about how PMake uses this graph is that the traversal is breadth-rst and occurs
in two passes.

After PMake has parsed the makefile, it begins with the nodes the user has told it to make (either on the command
line, or via a .MAIN target, or by the target being the rst in the le not labeled with the .NOTMAIN attribute) placed
in a queue. It continues to take the node o the front of the queue, mark it as something that needs to be made, pass
the node to Suff_FindDeps (mentioned earlier) to nd any implicit sources for the node, and place all the node's
children that have yet to be marked at the end of the queue. If any of the children is a .USE rule, its attributes
are applied to the parent, then its commands are appended to the parent's list of commands and its children are
linked to its parent. The parent's unmade children counter is then decremented (since the .USE node has been
processed). You will note that this allows a .USE node to have children that are .USE nodes and the rules will be
applied in sequence. If the node has no children, it is placed at the end of another queue to be examined in the
second pass. This process continues until the rst queue is empty.

At this point, all the leaves of the graph are in the examination queue. PMake removes the node at the head of the
queue and sees if it is out-of-date. If it is, it is passed to a function that will execute the commands for the node
asynchronously. When the commands have completed, all the node's parents have their unmade children counter
decremented and, if the counter is then 0, they are placed on the examination queue. Likewise, if the node is up-to-
date. Only those parents that were marked on the downward pass are processed in this way. Thus PMake traverses
the graph back up to the nodes the user instructed it to create. When the examination queue is empty and no shells
are running to create a target, PMake is finished.

Once all targets have been processed, PMake executes the commands attached to the .END target, either explicitly
or through the use of an ellipsis in a shell script. If there were no errors during the entire process but there are
still some targets unmade (PMake keeps a running count of how many targets are left to be made), there is a cycle
in the graph. PMake does a depth-rst traversal of the graph to nd all the targets that were not made and prints
them out one by one.

34

Chapter 5. Answers to Exercises
Exercise 3.1

This is something of a trick question, for which I apologize. The trick comes from the UNIX® definition of a suffix,
which PMake does not necessarily share. You will have noticed that all the suffixes used in this tutorial (and in
UNIX® in general) begin with a period (.ms, .c, etc.). Now, PMake's idea of a suffix is more like English's: it is the
characters at the end of a word. With this in mind, one possible solution to this problem goes as follows:

.SUFFIXES : ec.exe .exe ec.obj .obj .asm
ec.objec.exe .obj.exe :
 link -o $(.TARGET) $(.IMPSRC)
.asmec.obj :
 asm -o $(.TARGET) -DDO_ERROR_CHECKING $(.IMPSRC)
.asm.obj :
 asm -o $(.TARGET) $(.IMPSRC)

Excercise 3.2

The trick to this one lies in the := variable-assignment operator and the :S variable-expansion modifier. Basically
what you want is to take the pointer variable, so to speak, and transform it into an invocation of the variable at
which it points. You might try something like:

$(PTR:S/^/\$(/:S/$/))

which places $(at the front of the variable name and) at the end, thus transforming VAR, for example, into
$(VAR) , which is just what we want. Unfortunately (as you know if you have tried it), since, as it says in the hint,
PMake does no further substitution on the result of a modified expansion, that is all you get. The solution is to
make use of := to place that string into yet another variable, then invoke the other variable directly:

*PTR := $(PTR:S/^/\$(/:S/$/)/)

You can then use $(*PTR) to your heart's content.

Glossary of Jargon
attribute A property given to a target that causes PMake to treat it differently.

command script The lines immediately following a dependency line that specify commands
to execute to create each of the targets on the dependency line. Each line in
the command script must begin with a tab.

command-line variable A variable defined in an argument when PMake is rst executed. Overrides
all assignments to the same variable name in the makefile.

conditional A construct much like that used in C that allows a makefile to be configured
on the y based on the local environment, or on what is being made by that
invocation of PMake.

creation script Commands used to create a target.

dependency The relationship between a source and a target. This comes in three flavors, as
indicated by the operator between the target and the source. : gives a straight
time-wise dependency (if the target is older than the source, the target is out-
of-date), while ! provides simply an ordering and always considers the target
out-of-date. :: is much like :, save it creates multiple instances of a target
each of which depends on its own list of sources.

dynamic source This refers to a source that has a local variable invocation in it. It allows a
single dependency line to specify a different source for each target on the
line.

global variable Any variable defined in a makefile. Takes precedence over variables defined
in the environment, but not over command-line or local variables.

input graph What PMake constructs from a makefile. Consists of nodes made of the targets
in the makefile, and the links between them (the dependencies). The links
are directed (from source to target) and there may not be any cycles (loops)
in the graph.

local variable A variable defined by PMake visible only in a target's shell script. There are
seven local variables, not all of which are defined for every target: .TARGET,
.ALLSRC, .OODATE, .PREFIX, .IMPSRC, .ARCHIVE , and .MEMBER. .TARGET, .PRE-
FIX, .ARCHIVE , and .MEMBER may be used on dependency lines to create “dy-
namic sources”.

makefile A le that describes how a system is built. If you do not know what it is after
reading this tutorial…

modifier A letter, following a colon, used to alter how a variable is expanded. It has no
effect on the variable itself.

operator What separates a source from a target (on a dependency line) and specifies
the relationship between the two. There are three: :, ::, and !.

search path A list of directories in which a le should be sought. PMake's view of the con-
tents of directories in a search path does not change once the makefile has
been read. A le is sought on a search path only if it is exclusively a source.

shell A program to which commands are passed in order to create targets.

source Anything to the right of an operator on a dependency line. Targets on the
dependency line are usually created from the sources.

Glossary of Jargon

special target A target that causes PMake to do special things when it is encountered.

suffix The tail end of a le name. Usually begins with a period, like .c or .ms.

target A word to the left of the operator on a dependency line. More generally, any
le that PMake might create. A le may be (and often is) both a target and a
source (what it is depends on how PMake is looking at it at the time – sort of
like the wave/particle duality of light, you know).

transformation rule A special construct in a makefile that specifies how to create a le of one type
from a le of another, as indicated by their suffixes.

variable expansion The process of substituting the value of a variable for a reference to it. Ex-
pansion may be altered by means of modifiers.

variable A place in which to store text that may be retrieved later. Also used to define
the local environment. Conditionals exist that test whether a variable is de-
fined or not.

38

	PMake — A Tutorial
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. The Basics of PMake
	2.1. Dependency Lines
	2.2. Shell Commands
	2.3. Variables
	2.3.1. Local Variables
	2.3.2. Command-line Variables
	2.3.3. Global Variables
	2.3.4. Environment Variables

	2.4. Comments
	2.5. Parallelism
	2.6. Writing and Debugging a Makefile
	2.7. Invoking PMake
	2.8. Summary

	Chapter 3. Short-cuts and Other Nice Things
	3.1. Transformation Rules
	3.2. Including Other Makefiles
	3.3. Saving Commands
	3.4. Target Attributes
	3.5. Special Targets
	3.6. Modifying Variable Expansion
	3.7. More Exercises

	Chapter 4. PMake for Gods
	4.1. Search Paths
	4.2. Archives and Libraries
	4.3. On the Condition...
	4.4. A Shell is a Shell is a Shell
	4.5. Compatibility
	4.6. DEFCON 3 – Variable Expansion
	4.7. DEFCON 2 – The Number of the Beast
	4.8. DEFCON 1 – Imitation is the Not the Highest Form of Flattery
	4.9. The Way Things Work

	Chapter 5. Answers to Exercises
	Glossary of Jargon

