FreeBSD Documentation Project Primer for New
 Contributors
Table of Contents
	Preface	1. Shell Prompts
	2. Typographic Conventions
	3. Notes, Tips, Important Information, Warnings, and
	Examples
	4. Acknowledgments

	1. Overview	1.1. Quick Start
	1.2. The FreeBSD Documentation Set

	2. Tools	2.1. Required Tools	2.1.1. DTDs and
	Entities

	2.2. Optional Tools	2.2.1. Software

	3. The Working Copy	3.1. Documentation and Manual Pages
	3.2. Choosing a Directory
	3.3. Checking Out a Copy
	3.4. Updating a Working Copy
	3.5. Reverting Changes
	3.6. Making a Diff
	3.7. Subversion References

	4. Documentation Directory Structure	4.1. The Top Level,
 doc/
	4.2. The
 lang.encoding/
 Directories
	4.3. Document-Specific Information	4.3.1. The Handbook	4.3.1.1. Physical Organization	4.3.1.1.1. Makefile
	4.3.1.1.2. book.xml
	4.3.1.1.3. directory/chapter.xml

	5. The Documentation Build Process	5.1. Rendering DocBook into Output
	5.2. The FreeBSD Documentation Build Toolset
	5.3. Understanding Makefiles in the
 Documentation Tree	5.3.1. Subdirectory Makefiles
	5.3.2. Documentation Makefiles

	5.4. FreeBSD Documentation Project
 Make Includes	5.4.1. doc.project.mk	5.4.1.1. Variables
	5.4.1.2. Conditionals

	5.4.2. doc.subdir.mk	5.4.2.1. Variables
	5.4.2.2. Targets and Macros	5.4.2.2.1. Provided Targets

	5.4.2.3. More on Conditionals
	5.4.2.4. Looping Constructs in make
	 (.for)

	6. The Website	6.1. Environment Variables
	6.2. Building and Installing the Web Pages

	7. XML Primer	7.1. Overview
	7.2. Elements, Tags, and Attributes	7.2.1. To Do…

	7.3. The DOCTYPE Declaration	7.3.1. Formal Public Identifiers
	(FPIs)	7.3.1.1. catalog Files

	7.3.2. Alternatives to FPIs

	7.4. Escaping Back to XML
	7.5. Comments	7.5.1. To Do…

	7.6. Entities	7.6.1. General Entities
	7.6.2. Parameter Entities
	7.6.3. To Do…

	7.7. Using Entities to Include Files	7.7.1. Using General Entities to Include Files
	7.7.2. Using Parameter Entities to Include Files
	7.7.3. To Do…	7.7.3.1. Use General Entities to Include Files
	7.7.3.2. Use Parameter Entities to Include Files

	7.8. Marked Sections	7.8.1. Marked Section Keywords	7.8.1.1. CDATA
	7.8.1.2. INCLUDE and
	 IGNORE

	7.8.2. To Do…

	7.9. Conclusion

	8. XHTML Markup	8.1. Introduction
	8.2. Formal Public Identifier (FPI)
	8.3. Sectional Elements
	8.4. Block Elements	8.4.1. Headings
	8.4.2. Paragraphs
	8.4.3. Block Quotations
	8.4.4. Lists
	8.4.5. Pre-formatted Text
	8.4.6. Tables

	8.5. In-line Elements	8.5.1. Emphasizing Information
	8.5.2. Indicating Fixed-Pitch Text
	8.5.3. Links	8.5.3.1. Linking to Other Documents on the Web
	8.5.3.2. Linking to Specific Parts of Documents

	9. DocBook Markup	9.1. Introduction
	9.2. FreeBSD Extensions	9.2.1. FreeBSD Elements
	9.2.2. FreeBSD Entities

	9.3. Formal Public Identifier (FPI)
	9.4. Document Structure	9.4.1. Starting a Book
	9.4.2. Starting an Article
	9.4.3. Indicating Chapters
	9.4.4. Sections Below Chapters
	9.4.5. Subdividing Using part
	Elements

	9.5. Block Elements	9.5.1. Paragraphs
	9.5.2. Block Quotations
	9.5.3. Tips, Notes, Warnings, Cautions, and Important
	Information
	9.5.4. Examples
	9.5.5. Lists and Procedures
	9.5.6. Showing File Samples
	9.5.7. Callouts
	9.5.8. Tables
	9.5.9. Examples for the User to Follow

	9.6. In-line Elements	9.6.1. Emphasizing Information
	9.6.2. Acronyms
	9.6.3. Quotations
	9.6.4. Keys, Mouse Buttons, and Combinations
	9.6.5. Applications, Commands, Options, and Cites
	9.6.6. Files, Directories, Extensions, Device Names
	9.6.7. The Name of Ports
	9.6.8. Hosts, Domains, IP Addresses, User Names, Group Names,
	and Other System Items
	9.6.9. Uniform Resource Identifiers
	(URIs)
	9.6.10. Email Addresses
	9.6.11. Describing Makefiles
	9.6.12. Literal Text
	9.6.13. Showing Items That the User Must
	Fill In
	9.6.14. Showing GUI Buttons
	9.6.15. Quoting System Errors

	9.7. Images	9.7.1. Image Formats
	9.7.2. Image File Locations
	9.7.3. Image Markup
	9.7.4. Image Makefile Entries
	9.7.5. Images and Chapters in Subdirectories

	9.8. Links	9.8.1. xml:id Attributes
	9.8.2. Crossreferences with xref
	9.8.3. Linking to Other Documents on the
	Web

	10. Style Sheets	10.1. CSS	10.1.1. The DocBook Documents

	11. Translations
	12. PO Translations	12.1. Introduction
	12.2. Quick Start
	12.3. Creating New Translations
	12.4. Translating
	12.5. Tips for Translators	12.5.1. Preserving XML Tags
	12.5.2. Preserving Spaces
	12.5.3. Verbatim Tags
	12.5.4. $FreeBSD$
	Strings

	12.6. Building a Translated Document
	12.7. Submitting the New Translation

	13. Manual Pages	13.1. Introduction
	13.2. Sections
	13.3. Markup	13.3.1. Manual Page Sections
	13.3.2. Macros
	13.3.3. Markup Guidelines
	13.3.4. Markup Tricks
	13.3.5. Important Macros	13.3.5.1. Organizational Macros
	13.3.5.2. Inline Macros

	13.4. Sample Manual Page Structures	13.4.1. Section 1 or 8 Command
	13.4.2. Section 4 Device Driver
	13.4.3. Section 5 Configuration File

	13.5. Example Manual Pages to Use as Templates
	13.6. Resources

	14. Writing Style	14.1. Tips	14.1.1. Be Clear
	14.1.2. Be Complete
	14.1.3. Be Concise

	14.2. Guidelines
	14.3. Style Guide	14.3.1. Letter Case
	14.3.2. Acronyms
	14.3.3. Indentation
	14.3.4. Tag Style	14.3.4.1. Tag Spacing
	14.3.4.2. Separating Tags

	14.3.5. Whitespace Changes
	14.3.6. Non-Breaking Space

	14.4. Word List

	15. Editor Configuration	15.1. Vim	15.1.1. Use
	15.1.2. Configuration

	15.2. Emacs	15.2.1. Validation
	15.2.2. Automated Proofreading with Flycheck and Igor
	15.2.3. FreeBSD Documentation Specific Settings

	15.3. nano	15.3.1. Configuration
	15.3.2. Use

	16. See Also	16.1. The FreeBSD Documentation Project
	16.2. XML
	16.3. HTML
	16.4. DocBook

	A. Examples	A.1. DocBook book
	A.2. DocBook article

	Index

List of Tables
	5.1. Common Output Formats
	12.1. Language Names

List of Examples
	1. A Sample Example
	5.1. Build a Single HTML Output File
	5.2. Build HTML-Split and PDF Output
	Files
	6.1. Build the Full Web Site and All Documents
	6.2. Build Only the Web Site in English
	6.3. Build and Install the Web Site
	7.1. Using an Element (Start and End Tags)
	7.2. Using an Element Without Content
	7.3. Elements Within Elements; em
	7.4. Using an Element with an Attribute
	7.5. Single Quotes Around Attributes
	7.6. XML Generic Comments
	7.7. Erroneous XML Comment
	7.8. Defining General Entities
	7.9. Defining Parameter Entities
	7.10. Using General Entities to Include Files
	7.11. Using Parameter Entities to Include Files
	7.12. Structure of a Marked Section
	7.13. Using a CDATA Marked
	 Section
	7.14. Using INCLUDE and
	 IGNORE in Marked Sections
	7.15. Using a Parameter Entity to Control a Marked
	 Section
	8.1. Normal XHTML Document
	Structure
	8.2. h1, h2,
	 and Other Header Tags
	8.3. p Example
	8.4. blockquote Example
	8.5. ul and
	 ol Example
	8.6. Definition Lists with dl
	8.7. pre Example
	8.8. Simple Use of table
	8.9. Using
	 rowspan
	8.10. Using
	 colspan
	8.11. Using rowspan and
	 colspan
	 Together
	8.12. em and
	 strong Example
	8.13. tt Example
	8.14. Using
	
	8.15. Creating an Anchor
	8.16. Linking to a Named Part of a Different
	 Document
	8.17. Linking to a Named Part of the Same Document
	9.1. Boilerplate book with
	 info
	9.2. Boilerplate article with
	 info
	9.3. A Simple Chapter
	9.4. Empty Chapters
	9.5. Sections in Chapters
	9.6. para Example
	9.7. blockquote Example
	9.8. tip and important Example
	9.9. example Source
	9.10. Rendered example
	9.11. itemizedlist and
	 orderedlist Example
	9.12. variablelist Example
	9.13. procedure Example
	9.14. programlisting Example
	9.15. co and
	 calloutlist Example
	9.16. informaltable Example
	9.17. Table with frame="none" Example
	9.18. screen, prompt,
	 and userinput Example
	9.19. emphasis Example
	9.20. acronym Example
	9.21. quote Example
	9.22. Keys, Mouse Buttons, and Combinations Example
	9.23. Applications, Commands, and Options Example
	9.24. filename Example
	9.25. package Example
	9.26. systemitem and Classes Example
	9.27. uri Example
	9.28. email with a Hyperlink Example
	9.29. email Without a Hyperlink Example
	9.30. buildtarget and
	 varname Example
	9.31. literal Example
	9.32. replaceable Example
	9.33. guibutton Example
	9.34. errorname Example
	9.35. xml:id on Chapters and
	 Sections Example
	9.36. xref Example
	9.37. link to a FreeBSD Documentation Web
	 Page Example
	9.38. link to a FreeBSD Web Page Example
	9.39. link to an External Web
	 Page Example
	12.1. Creating a Spanish Translation of the Porter's
	Handbook
	12.2. Creating a French Translation of the
	PGP Keys Article
	12.3. Translating the Porter's Handbook to Spanish
	12.4. Preserving XML Tags
	12.5. Building the Spanish Porter's Handbook
	12.6. Spanish Translation of the NanoBSD Article
	12.7. Korean UTF-8 Translation of the
	Explaining-BSD Article
	A.1. DocBook book
	A.2. DocBook article

FreeBSD Documentation Project Primer for New
 Contributors
The FreeBSD Documentation Project

Revision: 51563Copyright © 1998-2017 DocEng
CopyrightLast modified on 2018-04-17 11:20:38 by mat.Abstract
Thank you for becoming a part of the FreeBSD Documentation
	Project. Your contribution is extremely valuable, and we
	appreciate it.
This primer covers details needed
	to start contributing to the FreeBSD Documentation
	Project, or FDP, including tools, software,
	and the philosophy behind the
	Documentation Project.
This is a work in progress. Corrections and
	additions are always welcome.

 [

	 Split HTML
	
 /
 Single HTML
]

Preface
1. Shell Prompts
This table shows the default system prompt and
	superuser prompt. The examples use these prompts to
	indicate which type of user is running the example.
	User	Prompt
	Normal user	%
	root	#

2. Typographic Conventions
This table describes the typographic conventions
	used in this book.
	Meaning	Examples
	The names of commands.	Use ls -l to list all
		files.
	The names of files.	Edit .login.
	On-screen computer output.	You have mail.

	What the user types, contrasted with on-screen
		computer output.	% date +"The time is %H:%M"
The time is 09:18

	Manual page references.	Use su(1) to change user identity.
	User and group names.	Only root can do
		this.
	Emphasis.	The user must do
		this.
	Text that the user is expected to replace with
		the actual text.	To search for a keyword in the manual pages, type
		man -k
		 keyword
	Environment variables.	$HOME is set to the user's home
		directory.

3. Notes, Tips, Important Information, Warnings, and
	Examples
Notes, warnings, and examples appear within the
	text.
Note:
Notes are represented like this, and contain information
	 to take note of, as it may affect what the user
	 does.

Tip:
Tips are represented like this, and contain information
	 helpful to the user, like showing an easier way to do
	 something.

Important:
Important information is represented like this.
	 Typically, these show extra steps the user may need to
	 take.

Warning:
Warnings are represented like this, and contain
	 information warning about possible damage if the
	 instructions are not followed. This damage may be physical,
	 to the hardware or the user, or it may be non-physical, such
	 as the inadvertent deletion of important files.

Example 1. A Sample Example
Examples are represented like this, and typically
	 contain examples showing a walkthrough, or
	 the results of a particular action.

4. Acknowledgments
My thanks to Sue Blake, Patrick Durusau, Jon Hamilton,
	Peter Flynn, and Christopher Maden, who took the time to read
	early drafts of this document and offer many valuable comments
	and criticisms.
Chapter 1. Overview
Welcome to the FreeBSD Documentation Project
 (FDP). Quality documentation is crucial
 to the success of FreeBSD, and we value your contributions very
 highly.
This document describes how the FDP is
 organized, how to write and submit documentation, and how to
 effectively use the available tools.
Everyone is welcome to contribute to the
 FDP. Willingness to contribute is the only
 membership requirement.
This primer shows how to:
	Identify which parts of FreeBSD are maintained by the
	FDP.

	Install the required documentation tools and files.

	Make changes to the documentation.

	Submit changes back for review and inclusion in the FreeBSD
	documentation.

1.1. Quick Start
Some preparatory steps must be taken before editing the FreeBSD
 documentation. First, subscribe to the FreeBSD documentation project mailing list. Some team
 members also interact on the #bsddocs
 IRC channel on
 EFnet. These
 people can help with questions or problems involving the
 documentation.
	Install the
	 textproc/docproj meta-package
	 and Subversion.
	 This meta-package installs all of the software needed to
	 edit and build FreeBSD documentation. The
	 Subversion package is needed to
	 obtain a working copy of the documentation and generate
	 patches with.
pkg install docproj subversion

	Install a local working copy of the documentation from
	 the FreeBSD repository in
	 ~/doc (see
	 Chapter 3, The Working Copy).
% svn checkout https://svn.FreeBSD.org/doc/head ~/doc

	Configure the text editor:
	Word wrap set to 70 characters.

	Tab stops set to 2.

	Replace each group of 8 leading spaces with a
	 single tab.

Specific editor configurations are listed in
	 Chapter 15, Editor Configuration.

	Update the local working copy:
% svn up ~/doc

	Edit the documentation files that require changes. If a
	 file needs major changes, consult the mailing list for
	 input.
References to tag and entity usage can be found in
	 Chapter 8, XHTML Markup and
	 Chapter 9, DocBook Markup.

	After editing, check for problems by running:
% igor -R filename.xml | less -RS
Review the output and edit the file to fix any problems
	 shown, then rerun the command to find any remaining
	 problems. Repeat until all of the errors are
	 resolved.

	Always build-test changes before
	 submitting them. Running make in the
	 top-level directory of the documentation being edited will
	 generate that documentation in split HTML format. For
	 example, to build the English version of the Handbook in
	 HTML, run make in the
	 en_US.ISO8859-1/books/handbook/
	 directory.

	When changes are complete and tested, generate a
	 “diff file”:
% cd ~/doc
% svn diff > bsdinstall.diff.txt
Give the diff file a descriptive name. In the example
	 above, changes have been made to the
	 bsdinstall portion of
	 the Handbook.

	Submit the diff file using the web-based Problem
	 Report system. If using the web form, enter a
	 Summary of [patch] short description
	 of problem. Select the
	 Component Documentation. In the
	 Description field, enter a short description of the changes
	 and any important details about them. Use the
	 [Add an attachment]
	 button to attach the diff file. Finally, use the
	 [Submit Bug] button to
	 submit your diff to the problem report system.

1.2. The FreeBSD Documentation Set
The FDP is responsible for four
 categories of FreeBSD documentation.
	Handbook: The Handbook is the
	 comprehensive online resource and reference for FreeBSD
	 users.

	FAQ: The FAQ
	 uses a short question and answer format to address questions
	 that are frequently asked on the various mailing lists and
	 forums devoted to FreeBSD. This format does not permit long
	 and comprehensive answers.

	Manual pages: The English language
	 system manual pages are usually not written by the
	 FDP, as they are part of the base system.
	 However, the FDP can reword parts of
	 existing manual pages to make them clearer or to correct
	 inaccuracies.

	Web site: This is the main FreeBSD
	 presence on the web, visible at
	 https://www.FreeBSD.org/
	 and many mirrors around the world. The web site is
	 typically a new user's first exposure to FreeBSD.

Translation teams are responsible for translating the
 Handbook and web site into different languages. Manual pages
 are not translated at present.
Documentation source for the FreeBSD web site, Handbook, and
 FAQ is available in the documentation
 repository at
 https://svn.FreeBSD.org/doc/.
Source for manual pages is available in a separate
 source repository located at
 https://svn.FreeBSD.org/base/.
Documentation commit messages are visible with
 svn log. Commit messages are also
 archived at
	http://lists.FreeBSD.org/mailman/listinfo/svn-doc-all.
Web frontends to both of these repositories are available
 at https://svnweb.FreeBSD.org/doc/
 and https://svnweb.FreeBSD.org/base/.
Many people have written tutorials or how-to articles about
 FreeBSD. Some are stored as part of the FDP
 files. In other cases, the author has decided to keep the
 documentation separate. The FDP endeavors to
 provide links to as much of this external documentation as
 possible.
Chapter 2. Tools
Several software tools are used to manage the FreeBSD
 documentation and render it to different output formats. Some of
 these tools are required and must be installed before working
 through the examples in the following chapters. Some are
 optional, adding capabilities or making the job of creating
 documentation less demanding.
2.1. Required Tools
Install
 textproc/docproj from the
 Ports Collection. This meta-port installs
 all the applications required to do useful work with the FreeBSD
 documentation. Some further notes on particular components are
 given below.
2.1.1. DTDs and
	Entities
FreeBSD documentation uses several Document Type Definitions
	(DTDs) and sets of XML
	entities. These are all installed by the
	textproc/docproj
	port.
	XHTML DTD
	 (textproc/xhtml)
	XHTML is the markup language of
	 choice for the World Wide Web, and is used throughout
	 the FreeBSD web site.

	DocBook DTD (textproc/docbook-xml)
	DocBook is designed for marking up technical
	 documentation. Most of the FreeBSD documentation is
	 written in DocBook.

	ISO 8879 entities
	 (textproc/iso8879)
	Character entities from the ISO 8879:1986 standard
	 used by many DTDs. Includes named
	 mathematical symbols, additional characters in the Latin
	 character set (accents, diacriticals, and so on), and
	 Greek symbols.

2.2. Optional Tools
These applications are not required, but can make working on
 the documentation easier or add capabilities.
2.2.1. Software
	Vim
	 (editors/vim)
	A popular editor for working with
	 XML and derived documents, like
	 DocBook XML.

	Emacs or
	 XEmacs
	 (editors/emacs or
	 editors/xemacs)
	Both of these editors include a special mode for
	 editing documents marked up according to an
	 XML DTD. This
	 mode includes commands to reduce the amount of typing
	 needed, and help reduce the possibility of
	 errors.

Chapter 3. The Working Copy
The working copy is a copy of the FreeBSD
 repository documentation tree downloaded onto the local computer.
 Changes are made to the local working copy, tested, and then
 submitted as patches to be committed to the main
 repository.
A full copy of the documentation tree can occupy 700 megabytes
 of disk space. Allow for a full gigabyte of space to have room
 for temporary files and test versions of various output
 formats.
Subversion
	 is used to manage the FreeBSD documentation files. It is obtained by installing the Subversion package:
pkg install subversion
3.1. Documentation and Manual Pages
FreeBSD documentation is not just books and articles. Manual
 pages for all the commands and configuration files are also part
 of the documentation, and part of the FDP's
 territory. Two repositories are involved:
 doc for the books and articles, and
 base for the operating system and manual
 pages. To edit manual pages, the base
 repository must be checked out separately.
Repositories may contain multiple versions of documentation
 and source code. New modifications are almost always made only
 to the latest version, called head.
3.2. Choosing a Directory
FreeBSD documentation is traditionally stored in
 /usr/doc/, and system
 source code with manual pages in
 /usr/src/. These
 directory trees are relocatable, and users may want to put the
 working copies in other locations to avoid interfering with
 existing information in the main directories. The examples
 that follow use ~/doc
 and ~/src, both
 subdirectories of the user's home directory.
3.3. Checking Out a Copy
A download of a working copy from the repository is called
 a checkout, and done with
 svn checkout. This example checks out a
 copy of the latest version (head) of
 the main documentation tree:
% svn checkout https://svn.FreeBSD.org/doc/head ~/doc
A checkout of the source code to work on manual pages is
 very similar:
% svn checkout https://svn.FreeBSD.org/base/head ~/src
3.4. Updating a Working Copy
The documents and files in the FreeBSD repository change daily.
 People modify files and commit changes frequently. Even a short
 time after an initial checkout, there will already be
 differences between the local working copy and the main FreeBSD
 repository. To update the local version with the changes that
 have been made to the main repository, use
 svn update on the directory containing the
 local working copy:
% svn update ~/doc
Get in the protective habit of using
 svn update before editing document files.
 Someone else may have edited that file very recently, and the
 local working copy will not include the latest changes until it
 has been updated. Editing the newest version of a file is much
 easier than trying to combine an older, edited local file with
 the newer version from the repository.
3.5. Reverting Changes
Sometimes it turns out that changes were
 not necessary after all, or the writer just wants to start over.
 Files can be “reset” to their unchanged form with
 svn revert. For example, to erase the edits
 made to chapter.xml and reset it to
 unmodified form:
% svn revert chapter.xml
3.6. Making a Diff
After edits to a file or group of files are completed, the
 differences between the local working copy and the version on
 the FreeBSD repository must be collected into a single file for
 submission. These diff files are produced
 by redirecting the output of svn diff into a
 file:
% cd ~/doc
% svn diff > doc-fix-spelling.diff
Give the file a meaningful name that identifies the
 contents. The example above is for spelling fixes to the whole
 documentation tree.
If the diff file is to be submitted with the web
 “Submit a FreeBSD
	 problem report” interface, add a
 .txt extension to give the earnest and
 simple-minded web form a clue that the contents are plain
 text.
Be careful: svn diff includes all changes
 made in the current directory and any subdirectories. If there
 are files in the working copy with edits that are not ready to
 be submitted yet, provide a list of only the files that are to
 be included:
% cd ~/doc
% svn diff disks/chapter.xml printers/chapter.xml > disks-printers.diff
3.7. Subversion References
These examples show very basic usage of
 Subversion. More detail is available
 in the Subversion Book
 and the Subversion
	documentation.
Chapter 4. Documentation Directory Structure
Files and directories in the
 doc/ tree follow a
 structure meant to:
	Make it easy to automate converting the document to other
	formats.

	Promote consistency between the different documentation
	organizations, to make it easier to switch between working on
	different documents.

	Make it easy to decide where in the tree new documentation
	should be placed.

In addition, the documentation tree must accommodate
 documents in many different languages and encodings. It is
 important that the documentation tree structure does not enforce
 any particular defaults or cultural preferences.
4.1. The Top Level,
 doc/
There are two types of directory under
 doc/, each with very
 specific directory names and meanings.
	Directory	Usage
	
	 share	Contains files that are not specific to the various
	 translations and encodings of the documentation.
	 Contains subdirectories to further categorize the
	 information. For example, the files that comprise the
	 make(1) infrastructure are in
	 share/mk, while
	 the additional XML support files
	 (such as the FreeBSD extended DocBook
	 DTD) are in share/xml.
	
	 lang.encoding	One directory exists for each available translation
	 and encoding of the documentation, for example
	 en_US.ISO8859-1/
	 and zh_TW.UTF-8/.
	 The names are long, but by fully specifying the language
	 and encoding we prevent any future headaches when a
	 translation team wants to provide documentation in the
	 same language but in more than one encoding. This also
	 avoids problems that might be caused by a future switch
	 to Unicode.

4.2. The
 lang.encoding/
 Directories
These directories contain the documents themselves. The
 documentation is split into up to three more categories at
 this level, indicated by the different directory names.
	Directory	Usage
	
	 articles	Documentation marked up as a DocBook
	 article (or equivalent). Reasonably
	 short, and broken up into sections. Normally only
	 available as one XHTML file.
	books	Documentation marked up as a DocBook
	 book (or equivalent). Book length,
	 and broken up into chapters. Normally available as both
	 one large XHTML file (for people with
	 fast connections, or who want to print it easily from a
	 browser) and as a collection of linked, smaller
	 files.
	
	 man	For translations of the system manual pages. This
	 directory will contain one or more
	 manN
	 directories, corresponding to the sections that have
	 been translated.

Not every lang.encoding
 directory will have all of these subdirectories. It depends
 on how much translation has been accomplished by that
 translation team.
4.3. Document-Specific Information
This section contains specific notes about particular
 documents managed by the FDP.
4.3.1. The Handbook
books/handbook/
The Handbook is written in DocBook XML
	using the FreeBSD DocBook extended DTD.
The Handbook is organized as a DocBook
	book. The book is divided into
	parts, each of which contains several
	chapters. chapters are
	further subdivided into sections (sect1)
	and subsections (sect2,
	sect3) and so on.
4.3.1.1. Physical Organization
There are a number of files and directories within the
	 handbook directory.
Note:
The Handbook's organization may change over time, and
	 this document may lag in detailing the organizational
	 changes. Post questions about Handbook organization to the
	 FreeBSD documentation project mailing list.

4.3.1.1.1. Makefile
The Makefile defines some
	 variables that affect how the XML
	 source is converted to other formats, and lists the
	 various source files that make up the Handbook. It then
	 includes the standard doc.project.mk,
	 to bring in the rest of the code that handles converting
	 documents from one format to another.
4.3.1.1.2. book.xml
This is the top level document in the Handbook. It
	 contains the Handbook's DOCTYPE
	 declaration, as well as the elements that
	 describe the Handbook's structure.
book.xml uses parameter
	 entities to load in the files with the
	 .ent extension. These files
	 (described later) then define general
	 entities that are used throughout the rest of the
	 Handbook.
4.3.1.1.3. directory/chapter.xml
Each chapter in the Handbook is stored in a file
	 called chapter.xml in a separate
	 directory from the other chapters. Each directory is
	 named after the value of the id
	 attribute on the chapter
	 element.
For example, if one of the chapter files
	 contains:
<chapter id="kernelconfig">
...
</chapter>
Then it will be called
	 chapter.xml in the
	 kernelconfig directory. In general,
	 the entire contents of the chapter are in this one
	 file.
When the XHTML version of the
	 Handbook is produced, this will yield
	 kernelconfig.html. This is because
	 of the id value, and is not related to
	 the name of the directory.
In earlier versions of the Handbook, the files were
	 stored in the same directory as
	 book.xml, and named after the value
	 of the id attribute on the file's
	 chapter element. Now, it is possible
	 to include images in each chapter. Images for each
	 Handbook chapter are stored within share/images/books/handbook.
	 The localized version of these images should be
	 placed in the same directory as the XML
	 sources for each chapter. Namespace collisions are
	 inevitable, and it is easier to work with several
	 directories with a few files in them than it is to work
	 with one directory that has many files in it.
A brief look will show that there are many directories
	 with individual chapter.xml files,
	 including basics/chapter.xml,
	 introduction/chapter.xml, and
	 printing/chapter.xml.
Important:
Do not name chapters or directories after
	 their ordering within the Handbook. This ordering can
	 change as the content within the Handbook is
	 reorganized. Reorganization should be possible without
	 renaming files, unless entire chapters are being
	 promoted or demoted within the hierarchy.

The chapter.xml files are not
	 complete XML documents that can be
	 built individually. They can only be built
	 as parts of the whole Handbook.
Chapter 5. The Documentation Build Process
This chapter covers organization of the documentation build
 process and how make(1) is used to control it.
5.1. Rendering DocBook into Output
Different types of output can be produced from a single
 DocBook source file. The type of output desired is set with the
 FORMATS variable. A list of known formats is
 stored in KNOWN_FORMATS:
% cd ~/doc/en_US.ISO8859-1/books/handbook
% make -V KNOWN_FORMATS
Table 5.1. Common Output Formats
	FORMATS Value	File Type	Description
	html	HTML, one file	A single book.html or
	 article.html.
	html-split	HTML, multiple files	Multiple HTML files, one for
	 each chapter or section, for use on a typical web
	 site.
	pdf	PDF	Portable Document Format

The default output format can vary by document, but is
 usually html-split. Other formats are chosen
 by setting FORMATS to a specific value.
 Multiple output formats can be created at a single time by
 setting FORMATS to a list of formats.
Example 5.1. Build a Single HTML Output File
% cd ~/doc/en_US.ISO8859-1/books/handbook
% make FORMATS=html

Example 5.2. Build HTML-Split and PDF Output
	Files
% cd ~/doc/en_US.ISO8859-1/books/handbook
% make FORMATS="html-split pdf"

5.2. The FreeBSD Documentation Build Toolset
These are the tools used to build and install the
 FDP documentation.
	The primary build tool is make(1), specifically
	 Berkeley Make.

	Package building is handled by FreeBSD's
	 pkg-create(8).

	gzip(1) is used to create compressed versions of
	 the document. bzip2(1) archives are also supported.
	 tar(1) is used for package building.

	install(1) is used to install the
	 documentation.

5.3. Understanding Makefiles in the
 Documentation Tree
There are three main types of Makefiles
 in the FreeBSD Documentation Project tree.
	Subdirectory
	 Makefiles simply pass
	 commands to those directories below them.

	Documentation
	 Makefiles describe the
	 documents that are produced from this
	 directory.

	Make
	 includes are the glue that perform the document
	 production, and are usually of the form
	 doc.xxx.mk.

5.3.1. Subdirectory Makefiles
These Makefiles usually take the form
	of:
SUBDIR =articles
SUBDIR+=books

COMPAT_SYMLINK = en

DOC_PREFIX?= ${.CURDIR}/..
.include "${DOC_PREFIX}/share/mk/doc.project.mk"
The first four non-empty lines define the make(1)
	variables SUBDIR,
	COMPAT_SYMLINK, and
	DOC_PREFIX.
The SUBDIR statement and
	COMPAT_SYMLINK statement show how to
	assign a value to a variable, overriding any previous
	value.
The second SUBDIR statement shows how a
	value is appended to the current value of a variable. The
	SUBDIR variable is now articles
	 books.
The DOC_PREFIX assignment shows how a
	value is assigned to the variable, but only if it is not
	already defined. This is useful if
	DOC_PREFIX is not where this
	Makefile thinks it is - the user can
	override this and provide the correct value.
What does it all mean? SUBDIR
	mentions which subdirectories below this one the build process
	should pass any work on to.
COMPAT_SYMLINK is specific to
	compatibility symlinks (amazingly enough) for languages to
	their official encoding (doc/en would
	point to en_US.ISO-8859-1).
DOC_PREFIX is the path to the root of
	the FreeBSD Document Project tree. This is not always that easy
	to find, and is also easily overridden, to allow for
	flexibility. .CURDIR is a make(1)
	builtin variable with the path to the current
	directory.
The final line includes the FreeBSD Documentation Project's
	project-wide make(1) system file
	doc.project.mk which is the glue which
	converts these variables into build instructions.
5.3.2. Documentation Makefiles
These Makefiles set make(1)
	variables that describe how to build the documentation
	contained in that directory.
Here is an example:
MAINTAINER=nik@FreeBSD.org

DOC?= book

FORMATS?= html-split html

INSTALL_COMPRESSED?= gz
INSTALL_ONLY_COMPRESSED?=

SGML content
SRCS= book.xml

DOC_PREFIX?= ${.CURDIR}/../../..

.include "$(DOC_PREFIX)/share/mk/docproj.docbook.mk"
The MAINTAINER variable allows
	committers to claim ownership of a document in the FreeBSD
	Documentation Project, and take responsibility for maintaining
	it.
DOC is the name (sans the
	.xml extension) of the main document
	created by this directory. SRCS lists all
	the individual files that make up the document. This should
	also include important files in which a change should result
	in a rebuild.
FORMATS indicates the default formats
	that should be built for this document.
	INSTALL_COMPRESSED is the default list of
	compression techniques that should be used in the document
	build. INSTALL_ONLY_COMPRESS, empty by
	default, should be non-empty if only compressed documents are
	desired in the build.
The DOC_PREFIX and include statements
	should be familiar already.
5.4. FreeBSD Documentation Project
 Make Includes
make(1) includes are best explained by inspection of
 the code. Here are the system include files:
	doc.project.mk is the main project
	 include file, which includes all the following include
	 files, as necessary.

	doc.subdir.mk handles traversing of
	 the document tree during the build and install
	 processes.

	doc.install.mk provides variables
	 that affect ownership and installation of documents.

	doc.docbook.mk is included if
	 DOCFORMAT is docbook
	 and DOC is set.

5.4.1. doc.project.mk
By inspection:
DOCFORMAT?=	docbook
MAINTAINER?=	doc@FreeBSD.org

PREFIX?=	/usr/local
PRI_LANG?=	en_US.ISO8859-1

.if defined(DOC)
.if ${DOCFORMAT} == "docbook"
.include "doc.docbook.mk"
.endif
.endif

.include "doc.subdir.mk"
.include "doc.install.mk"
5.4.1.1. Variables
DOCFORMAT and
	 MAINTAINER are assigned default values,
	 if these are not set by the document make file.
PREFIX is the prefix under which the
	 documentation building tools
	 are installed. For normal package and port installation,
	 this is /usr/local.
PRI_LANG should be set to whatever
	 language and encoding is natural amongst users these
	 documents are being built for. US English is the
	 default.
Note:
PRI_LANG does not affect which
	 documents can, or even will, be built. Its main use is
	 creating links to commonly referenced documents into the
	 FreeBSD documentation install root.

5.4.1.2. Conditionals
The .if defined(DOC) line is an
	 example of a make(1) conditional which, like in other
	 programs, defines behavior if some condition is true or if
	 it is false. defined is a function which
	 returns whether the variable given is defined or not.
.if ${DOCFORMAT} == "docbook", next,
	 tests whether the DOCFORMAT variable is
	 "docbook", and in this case, includes
	 doc.docbook.mk.
The two .endifs close the two above
	 conditionals, marking the end of their application.
5.4.2. doc.subdir.mk
This file is too long to explain in detail. These notes
	describe the most important features.
5.4.2.1. Variables
	SUBDIR is a list of
	 subdirectories that the build process should go further
	 down into.

	ROOT_SYMLINKS is the name of
	 directories that should be linked to the document
	 install root from their actual locations, if the current
	 language is the primary language (specified by
	 PRI_LANG).

	COMPAT_SYMLINK is described in
	 the
	 Subdirectory Makefile
	 section.

5.4.2.2. Targets and Macros
Dependencies are described by
	 target:
	 dependency1 dependency2
	 ... tuples, where to build
	 target, the given
	 dependencies must be built first.
After that descriptive tuple, instructions on how to
	 build the target may be given, if the conversion process
	 between the target and its dependencies are not previously
	 defined, or if this particular conversion is not the same as
	 the default conversion method.
A special dependency .USE defines
	 the equivalent of a macro.
_SUBDIRUSE: .USE
.for entry in ${SUBDIR}
	@${ECHO} "===> ${DIRPRFX}${entry}"
	@(cd ${.CURDIR}/${entry} && \
	${MAKE} ${.TARGET:S/realpackage/package/:S/realinstall/install/} DIRPRFX=${DIRPRFX}${entry}/)
.endfor
In the above, _SUBDIRUSE is now
	 a macro which will execute the given commands when it is
	 listed as a dependency.
What sets this macro apart from other targets?
	 Basically, it is executed after the
	 instructions given in the build procedure it is listed as a
	 dependency to, and it does not adjust
	 .TARGET, which is the variable which
	 contains the name of the target currently being
	 built.
clean: _SUBDIRUSE
	rm -f ${CLEANFILES}
In the above, clean will use
	 the _SUBDIRUSE macro after it has
	 executed the instruction
	 rm -f ${CLEANFILES}. In effect, this
	 causes clean to go further and
	 further down the directory tree, deleting built files as it
	 goes down, not on the way back
	 up.
5.4.2.2.1. Provided Targets
	install and
		package both go down the
		directory tree calling the real versions of themselves
		in the subdirectories
		(realinstall and
		realpackage
		respectively).

	clean removes files
		created by the build process (and goes down the
		directory tree too).
		cleandir does the same, and
		also removes the object directory, if any.

5.4.2.3. More on Conditionals
	exists is another condition
	 function which returns true if the given file
	 exists.

	empty returns true if the given
	 variable is empty.

	target returns true if the given
	 target does not already exist.

5.4.2.4. Looping Constructs in make
	 (.for)
.for provides a way to repeat a set
	 of instructions for each space-separated element in a
	 variable. It does this by assigning a variable to contain
	 the current element in the list being examined.
_SUBDIRUSE: .USE
.for entry in ${SUBDIR}
	@${ECHO} "===> ${DIRPRFX}${entry}"
	@(cd ${.CURDIR}/${entry} && \
	${MAKE} ${.TARGET:S/realpackage/package/:S/realinstall/install/} DIRPRFX=${DIRPRFX}${entry}/)
.endfor
In the above, if SUBDIR is empty, no
	 action is taken; if it has one or more elements, the
	 instructions between .for and
	 .endfor would repeat for every element,
	 with entry being replaced with the value
	 of the current element.
Chapter 6. The Website
The FreeBSD web site is part of the FreeBSD documents. Files for
 the web site are stored in the
 en_US.ISO8859-1/htdocs subdirectory of the
 document tree directory, ~/doc in this
 example.
6.1. Environment Variables
Several environment variables control which parts of the
 web site are built or installed, and to which
 directories.
Tip:
The web build system uses make(1), and considers
	variables to be set when they have been defined, even if they
	are empty. The examples here show the recommended ways of
	defining and using these variables. Setting or defining these
	variables with other values or methods might lead to
	unexpected surprises.

	DESTDIR
	DESTDIR specifies the path where the web site files
	 are to be installed.
This variable is best set with env(1) or the user
	 shell's method of setting environment variables,
	 setenv for csh(1) or
	 export for sh(1).

	ENGLISH_ONLY
	Default: undefined. Build and include all
	 translations.
ENGLISH_ONLY=yes: use only
	 the English documents and ignore all translations.

	WEB_ONLY
	Default: undefined. Build both the web site
	 and all the books and articles.
WEB_ONLY=yes: build or install
	 only HTML pages from the
	 en_US.ISO8859-1/htdocs directory.
	 Other directories and documents, including books and
	 articles, will be ignored.

	WEB_LANG
	Default: undefined. Build and include all the
	 available languages on the web site.
Set to a space-separated list of languages to be
	 included in the build
	 or install. The formats are the same as the directory
	 names in the document root directory. For example, to
	 include the German and French documents:
WEB_LANG="de_DE.ISO8859-1 fr_FR.ISO8859-1"

WEB_ONLY, WEB_LANG,
 and ENGLISH_ONLY are make(1) variables
 and can be set in /etc/make.conf,
 Makefile.inc, as environment variables on
 the command line, or in dot files.
6.2. Building and Installing the Web Pages
Having obtained the documentation and web site source files,
 the web site can be built.
An actual installation of the web site is run as the root
 user because the permissions on the web server directory will
 not allow files to be installed by an unprivileged user.
 For testing, it can be useful to install the files as a normal
 user to a temporary directory.
In these examples, the web site files are built by user
 jru in their home
 directory, ~/doc, with a full path of
 /usr/home/jru/doc.
Tip:
The web site build uses the INDEX
	from the Ports Collection and might fail if that file or
	/usr/ports is not
	present. The simplest approach is to install the Ports
	Collection.

Example 6.1. Build the Full Web Site and All Documents
Build the web site and all documents. The resulting files
	are left in the document tree:
% cd ~/doc/en_US.ISO8859-1/htdocs/
% make all

Example 6.2. Build Only the Web Site in English
Build the web site only, in English, as user
	jru, and install
	the resulting files into /tmp/www for
	testing:
% cd ~/doc/en_US.ISO8859-1/htdocs/
% env DESTDIR=/tmp/www make ENGLISH_ONLY=yes WEB_ONLY=yes all install
Changes to static files can usually be tested by viewing
	the modified files directly with a web browser. If the site
	has been built as shown above, a modified main page can be
	viewed with:
% firefox /tmp/www/data/index.html
Modifications to dynamic files can be tested with a web
	server running on the local system. After building the site
	as shown above, this
	/usr/local/etc/apache24/httpd.conf can be
	used with www/apache24:
httpd.conf for testing the FreeBSD website
Define TestRoot "/tmp/www/data"

directory for configuration files
ServerRoot "/usr/local"

Listen 80

minimum required modules
LoadModule authz_core_module libexec/apache24/mod_authz_core.so
LoadModule mime_module libexec/apache24/mod_mime.so
LoadModule unixd_module libexec/apache24/mod_unixd.so
LoadModule cgi_module libexec/apache24/mod_cgi.so
LoadModule dir_module libexec/apache24/mod_dir.so

run the webserver as user and group
User www
Group www

ServerAdmin you@example.com
ServerName fbsdtest

deny access to all files
<Directory />
 AllowOverride none
 Require all denied
</Directory>

allow access to the website directory
DocumentRoot "${TestRoot}"
<Directory "${TestRoot}">
 Options Indexes FollowSymLinks
 AllowOverride None
 Require all granted
</Directory>

prevent access to .htaccess and .htpasswd files
<Files ".ht*">
 Require all denied
</Files>

ErrorLog "/var/log/httpd-error.log"
LogLevel warn

set up the CGI script directory
<Directory "${TestRoot}/cgi">
 AllowOverride None
 Options None
 Require all granted
 Options +ExecCGI
 AddHandler cgi-script .cgi
</Directory>

Include etc/apache24/Includes/*.conf
Start the web server with
service apache24 onestart
The	web site can be viewed at
	http://localhost. Be aware that many
	links refer to the real FreeBSD site by name, and those links
	will still go to the external site instead of the local test
	version. Fully testing the local site will require
	temporarily setting DNS so
	www.FreeBSD.org resolves to
	localhost or the local
	IP address.

Example 6.3. Build and Install the Web Site
Build the web site and all documents as user
	jru. Install the
	resulting files as
	root into the
	default directory,
	/root/public_html:
% cd ~/doc/en_US.ISO8859-1/htdocs
% make all
% su -
Password:
cd /usr/home/jru/doc/en_US.ISO8859-1/htdocs
make install

The install process does not delete any old or outdated
 files that existed previously in the same directory. If a new
 copy of the site is built and installed every day, this command
 will find and delete all files that have not been updated in
 three days:
find /usr/local/www -ctime 3 -delete
Chapter 7. XML Primer
Most FDP documentation is written with
 markup languages based on XML. This chapter
 explains what that means, how to read and understand the
 documentation source, and the XML techniques
 used.
Portions of this section were inspired by Mark Galassi's
 Get
 Going With DocBook.
7.1. Overview
In the original days of computers, electronic text was
 simple. There were a few character sets like
 ASCII or EBCDIC, but that
 was about it. Text was text, and what you saw really was what
 you got. No frills, no formatting, no intelligence.
Inevitably, this was not enough. When text is in a
 machine-usable format, machines are expected to be able to use
 and manipulate it intelligently. Authors want to indicate that
 certain phrases should be emphasized, or added to a glossary, or
 made into hyperlinks. Filenames could be shown in a
 “typewriter” style font for viewing on screen, but
 as “italics” when printed, or any of a myriad of
 other options for presentation.
It was once hoped that Artificial Intelligence (AI) would
 make this easy. The computer would read the document and
 automatically identify key phrases, filenames, text that the
 reader should type in, examples, and more. Unfortunately, real
 life has not happened quite like that, and computers still
 require assistance before they can meaningfully process
 text.
More precisely, they need help identifying what is what.
 Consider this text:
To remove /tmp/foo, use
	rm(1).
% rm /tmp/foo

It is easy to see which parts are filenames, which are
 commands to be typed in, which parts are references to manual
 pages, and so on. But the computer processing the document
 cannot. For this we need markup.
“Markup” is commonly used to describe
 “adding value” or “increasing cost”.
 The term takes on both these meanings when applied to text.
 Markup is additional text included in the document,
 distinguished from the document's content in some way, so that
 programs that process the document can read the markup and use
 it when making decisions about the document. Editors can hide
 the markup from the user, so the user is not distracted by
 it.
The extra information stored in the markup
 adds value to the document. Adding the
 markup to the document must typically be done by a
 person—after all, if computers could recognize the text
 sufficiently well to add the markup then there would be no need
 to add it in the first place. This
 increases the cost (the effort required) to
 create the document.
The previous example is actually represented in this
 document like this:
<para>To remove <filename>/tmp/foo</filename>, use &man.rm.1;.</para>

<screen>&prompt.user; <userinput>rm /tmp/foo</userinput></screen>
The markup is clearly separate from the content.
Markup languages define what the markup means and how it
 should be interpreted.
Of course, one markup language might not be enough. A
 markup language for technical documentation has very different
 requirements than a markup language that is intended for cookery
 recipes. This, in turn, would be very different from a markup
 language used to describe poetry. What is really needed is a
 first language used to write these other markup languages. A
 meta markup language.
This is exactly what the eXtensible Markup
 Language (XML) is. Many markup languages
 have been written in XML, including the two
 most used by the FDP,
 XHTML and DocBook.
Each language definition is more properly called a grammar,
 vocabulary, schema or Document Type Definition
 (DTD). There are various languages to
 specify an XML grammar, or
 schema.
A schema is a
 complete specification of all the elements
 that are allowed to appear, the order in which they should
 appear, which elements are mandatory, which are optional, and so
 forth. This makes it possible to write an
 XML parser which reads
 in both the schema and a document which claims to conform to the
 schema. The parser can then confirm whether or not all the
 elements required by the vocabulary are in the document in the
 right order, and whether there are any errors in the markup.
 This is normally referred to as
 “validating the document”.
Note:
Validation confirms that the choice of
	elements, their ordering, and so on, conforms to that listed
	in the grammar. It does not check
	whether appropriate markup has been used
	for the content. If all the filenames in a document were
	marked up as function names, the parser would not flag this as
	an error (assuming, of course, that the schema defines
	elements for filenames and functions, and that they are
	allowed to appear in the same place).

Most contributions to the Documentation
 Project will be content marked up in either
 XHTML or DocBook, rather than alterations to
 the schemas. For this reason, this book will not touch on how
 to write a vocabulary.
7.2. Elements, Tags, and Attributes
All the vocabularies written in XML share
 certain characteristics. This is hardly surprising, as the
 philosophy behind XML will inevitably show
 through. One of the most obvious manifestations of this
 philosophy is that of content and
 elements.
Documentation, whether it is a single web page, or a lengthy
 book, is considered to consist of content. This content is then
 divided and further subdivided into elements. The purpose of
 adding markup is to name and identify the boundaries of these
 elements for further processing.
For example, consider a typical book. At the very top
 level, the book is itself an element. This “book”
 element obviously contains chapters, which can be considered to
 be elements in their own right. Each chapter will contain more
 elements, such as paragraphs, quotations, and footnotes. Each
 paragraph might contain further elements, identifying content
 that was direct speech, or the name of a character in the
 story.
It may be helpful to think of this as
 “chunking” content. At the very top level is one
 chunk, the book. Look a little deeper, and there are more
 chunks, the individual chapters. These are chunked further into
 paragraphs, footnotes, character names, and so on.
Notice how this differentiation between different elements
 of the content can be made without resorting to any
 XML terms. It really is surprisingly
 straightforward. This could be done with a highlighter pen and
 a printout of the book, using different colors to indicate
 different chunks of content.
Of course, we do not have an electronic highlighter pen, so
 we need some other way of indicating which element each piece of
 content belongs to. In languages written in
 XML (XHTML, DocBook, et
 al) this is done by means of tags.
A tag is used to identify where a particular element starts,
 and where the element ends. The tag is not part of
 the element itself. Because each grammar was
 normally written to mark up specific types of information, each
 one will recognize different elements, and will therefore have
 different names for the tags.
For an element called
 element-name the start tag will
 normally look like <element-name>.
 The corresponding closing tag for this element is </element-name>.
Example 7.1. Using an Element (Start and End Tags)
XHTML has an element for indicating
	that the content enclosed by the element is a paragraph,
	called p.
<p>This is a paragraph. It starts with the start tag for
 the 'p' element, and it will end with the end tag for the 'p'
 element.</p>

<p>This is another paragraph. But this one is much shorter.</p>

Some elements have no content. For example, in
 XHTML, a horizontal line can be included in
 the document. For these “empty” elements,
 XML introduced a shorthand form that is
 completely equivalent to the two-tag version:
Example 7.2. Using an Element Without Content
XHTML has an element for indicating a
	horizontal rule, called hr. This element
	does not wrap content, so it looks like this:
<p>One paragraph.</p>
<hr></hr>

<p>This is another paragraph. A horizontal rule separates this
 from the previous paragraph.</p>
The shorthand version consists of a single tag:
<p>One paragraph.</p>
<hr/>

<p>This is another paragraph. A horizontal rule separates this
 from the previous paragraph.</p>

As shown above, elements can contain other elements. In the
 book example earlier, the book element contained all the chapter
 elements, which in turn contained all the paragraph elements,
 and so on.
Example 7.3. Elements Within Elements; em
<p>This is a simple paragraph where some
 of the words have been emphasized.</p>

The grammar consists of rules that describe which elements
 can contain other elements, and exactly what they can
 contain.
Important:
People often confuse the terms tags and elements, and use
	the terms as if they were interchangeable. They are
	not.
An element is a conceptual part of your document. An
	element has a defined start and end. The tags mark where the
	element starts and ends.
When this document (or anyone else knowledgeable about
	XML) refers to
	“the <p> tag”
	they mean the literal text consisting of the three characters
	<, p, and
	>. But the phrase
	“the p element” refers to the
	whole element.
This distinction is very subtle. But
	keep it in mind.

Elements can have attributes. An attribute has a name and a
 value, and is used for adding extra information to the element.
 This might be information that indicates how the content should
 be rendered, or might be something that uniquely identifies that
 occurrence of the element, or it might be something else.
An element's attributes are written
 inside the start tag for that element, and
 take the form
 attribute-name="attribute-value".
In XHTML, the p
 element has an attribute called
 align, which suggests an
 alignment (justification) for the paragraph to the program
 displaying the XHTML.
The align attribute can
 take one of four defined values, left,
 center, right and
 justify. If the attribute is not specified
 then the default is left.
Example 7.4. Using an Element with an Attribute
<p align="left">The inclusion of the align attribute
 on this paragraph was superfluous, since the default is left.</p>

<p align="center">This may appear in the center.</p>

Some attributes only take specific values, such as
 left or justify. Others
 allow any value.
Example 7.5. Single Quotes Around Attributes
<p align='right'>I am on the right!</p>

Attribute values in XML must be enclosed
 in either single or double quotes. Double quotes are
 traditional. Single quotes are useful when the attribute value
 contains double quotes.
Information about attributes, elements, and tags is stored
 in catalog files. The Documentation Project uses standard
 DocBook catalogs and includes additional catalogs for
 FreeBSD-specific features. Paths to the catalog files are defined
 in an environment variable so they can be found by the document
 build tools.
7.2.1. To Do…
Before running the examples in this document, install
	 textproc/docproj from
	 the FreeBSD Ports Collection. This is a
	 meta-port that downloads and installs
	 the standard programs and supporting files needed by the
	 Documentation Project. csh(1) users must use
	 rehash for the shell to recognize new
	 programs after they have been installed, or log out
	 and then log back in again.
	Create example.xml, and enter
	 this text:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>An Example XHTML File</title>
 </head>

 <body>
 <p>This is a paragraph containing some text.</p>

 <p>This paragraph contains some more text.</p>

 <p align="right">This paragraph might be right-justified.</p>
 </body>
</html>

	Try to validate this file using an
	 XML parser.
textproc/docproj
	 includes the xmllint
	 validating
	 parser.
Use xmllint to validate the
	 document:
% xmllint --valid --noout example.xml
xmllint returns without displaying
	 any output, showing that the document validated
	 successfully.

	See what happens when required elements are omitted.
	 Delete the line with the
	 <title> and
	 </title> tags, and re-run
	 the validation.
% xmllint --valid --noout example.xml
example.xml:5: element head: validity error : Element head content does not follow the DTD, expecting ((script | style | meta | link | object | isindex)* , ((title , (script | style | meta | link | object | isindex)* , (base , (script | style | meta | link | object | isindex)*)?) | (base , (script | style | meta | link | object | isindex)* , title , (script | style | meta | link | object | isindex)*))), got ()
This shows that the validation error comes from the
	 fifth line of the
	 example.xml file and that the
	 content of the <head> is
	 the part which does not follow the rules of the
	 XHTML grammar.
Then xmllint shows the line where
	 the error was found and marks the exact character position
	 with a ^ sign.

	Replace the title element.

7.3. The DOCTYPE Declaration
The beginning of each document can specify the name of the
 DTD to which the document conforms. This
 DOCTYPE declaration is used by XML parsers to
 identify the DTD and ensure that the document
 does conform to it.
A typical declaration for a document written to conform with
 version 1.0 of the XHTML
 DTD looks like this:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
That line contains a number of different components.
	<!
	The indicator shows
	 this is an XML declaration.

	DOCTYPE
	Shows that this is an XML
	 declaration of the document type.

	html
	Names the first
	 element that
	 will appear in the document.

	PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
	Lists the Formal Public Identifier
	 (FPI)
	
	 for the DTD to which this document
	 conforms. The XML parser uses this to
	 find the correct DTD when processing
	 this document.
PUBLIC is not a part of the
	 FPI, but indicates to the
	 XML processor how to find the
	 DTD referenced in the
	 FPI. Other ways of telling the
	 XML parser how to find the
	 DTD are shown later.

	"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
	A local filename or a URL to find
	 the DTD.

	>
	Ends the declaration and returns to the
	 document.

7.3.1. Formal Public Identifiers
	(FPIs)
Note:
It is not necessary to know this, but it is useful
	 background, and might help debug problems when the
	 XML processor can not locate the
	 DTD.

FPIs must follow a specific
	syntax:
"Owner//Keyword Description//Language"
	Owner
	The owner of the FPI.
The beginning of the string identifies the owner of
	 the FPI. For example, the
	 FPI
	 "ISO 8879:1986//ENTITIES Greek
		Symbols//EN" lists
	 ISO 8879:1986 as being the owner for
	 the set of entities for Greek symbols.
	 ISO 8879:1986 is the International
	 Organization for Standardization
	 (ISO) number for the
	 SGML standard, the predecessor (and a
	 superset) of XML.
Otherwise, this string will either look like
	 -//Owner
	 or
	 +//Owner
	 (notice the only difference is the leading
	 + or -).
If the string starts with - then
	 the owner information is unregistered, with a
	 + identifying it as
	 registered.
ISO 9070:1991 defines how
	 registered names are generated. It might be derived
	 from the number of an ISO
	 publication, an ISBN code, or an
	 organization code assigned according to
	 ISO 6523. Additionally, a
	 registration authority could be created in order to
	 assign registered names. The ISO
	 council delegated this to the American National
	 Standards Institute (ANSI).
Because the FreeBSD Project has not been registered,
	 the owner string is -//FreeBSD. As seen
	 in the example, the W3C are not a
	 registered owner either.

	Keyword
	There are several keywords that indicate the type of
	 information in the file. Some of the most common
	 keywords are DTD,
	 ELEMENT, ENTITIES,
	 and TEXT. DTD is
	 used only for DTD files,
	 ELEMENT is usually used for
	 DTD fragments that contain only
	 entity or element declarations. TEXT
	 is used for XML content (text and
	 tags).

	Description
	Any description can be given for the contents
	 of this file. This may include version numbers or any
	 short text that is meaningful and unique for the
	 XML system.

	Language
	An ISO two-character code that
	 identifies the native language for the file.
	 EN is used for English.

7.3.1.1. catalog Files
With the syntax above, an XML
	 processor needs to have some way of turning the
	 FPI into the name of the file containing
	 the DTD. A catalog file (typically
	 called catalog) contains lines that map
	 FPIs to filenames. For example, if the
	 catalog file contained the line:
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "1.0/transitional.dtd"
The XML processor knows that the
	 DTD is called
	 transitional.dtd in the
	 1.0 subdirectory of the directory that
	 held catalog.
Examine the contents of
	 /usr/local/share/xml/dtd/xhtml/catalog.xml.
	 This is the catalog file for the XHTML
	 DTDs that were installed as part of the
	 textproc/docproj port.
7.3.2. Alternatives to FPIs
Instead of using an FPI to indicate the
	DTD to which the document conforms (and
	therefore, which file on the system contains the
	DTD), the filename can be explicitly
	specified.
The syntax is slightly different:
<!DOCTYPE html SYSTEM "/path/to/file.dtd">
The SYSTEM keyword indicates that the
	XML processor should locate the
	DTD in a system specific fashion. This
	typically (but not always) means the DTD
	will be provided as a filename.
Using FPIs is preferred for reasons of
	portability. If the SYSTEM identifier is
	used, then the DTD must be provided and
	kept in the same location for everyone.
7.4. Escaping Back to XML
Some of the underlying XML syntax can be
 useful within documents. For example, comments can be included
 in the document, and will be ignored by the parser. Comments
 are entered using XML syntax. Other uses for
 XML syntax will be shown later.
XML sections begin with a
 <! tag and end with a
 >. These sections contain instructions
 for the parser rather than elements of the document. Everything
 between these tags is XML syntax. The
 DOCTYPE
	declaration shown earlier is an example of
 XML syntax included in the document.
7.5. Comments
An XML document may contain comments.
 They may appear anywhere as long as they are not inside tags.
 They are even allowed in some locations inside the
 DTD (e.g., between entity
	declarations).
XML comments start with the string
 “<!--” and end with the
 string “-->”.
Here are some examples of valid XML
 comments:
Example 7.6. XML Generic Comments
<!-- This is inside the comment -->

<!--This is another comment-->

<!-- This is how you
 write multiline comments -->

<p>A simple <!-- Comment inside an element's content --> paragraph.</p>

XML comments may contain any strings
 except “--”:
Example 7.7. Erroneous XML Comment
<!-- This comment--is wrong -->

7.5.1. To Do…
	Add some comments to
	 example.xml, and check that the file
	 still validates using xmllint.

	Add some invalid comments to
	 example.xml, and see the error
	 messages that xmllint gives when it
	 encounters an invalid comment.

7.6. Entities
Entities are a mechanism for assigning names to chunks of
 content. As an XML parser processes a
 document, any entities it finds are replaced by the content of
 the entity.
This is a good way to have re-usable, easily changeable
 chunks of content in XML documents. It is
 also the only way to include one marked up file inside another
 using XML.
There are two types of entities for two different
 situations: general entities and
 parameter entities.
7.6.1. General Entities
General entities are used to assign names to reusable
	chunks of text. These entities can only be used in the
	document. They cannot be used in an
	XML context.
To include the text of a general entity in the document,
	include
	&entity-name;
	in the text. For example, consider a general entity called
	current.version which expands to the
	current version number of a product. To use it in the
	document, write:
<para>The current version of our product is
 ¤t.version;.</para>
When the version number changes, edit the definition of
	the general entity, replacing the value. Then reprocess the
	document.
General entities can also be used to enter characters that
	could not otherwise be included in an XML
	document. For example, < and
	& cannot normally appear in an
	XML document. The XML
	parser sees the < symbol as the start of
	a tag. Likewise, when the & symbol is
	seen, the next text is expected to be an entity name.
These symbols can be included by using two predefined
	general entities: < and
	&.
General entities can only be defined within an
	XML context. Such definitions are usually
	done immediately after the DOCTYPE declaration.
Example 7.8. Defining General Entities
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" [
<!ENTITY current.version "3.0-RELEASE">
<!ENTITY last.version "2.2.7-RELEASE">
]>
The DOCTYPE declaration has been extended by adding a
	 square bracket at the end of the first line. The two
	 entities are then defined over the next two lines, the
	 square bracket is closed, and then the DOCTYPE declaration
	 is closed.
The square brackets are necessary to indicate that the
	 DTD indicated by the DOCTYPE declaration is being
	 extended.

7.6.2. Parameter Entities
Parameter entities, like
	general
	 entities, are used to assign names to reusable chunks
	of text. But parameter entities can only be used within an
	XML
	 context.
Parameter entity definitions are similar to those for
	general entities. However, parameter entries are included
	with
	%entity-name;.
	The definition also includes the % between
	the ENTITY keyword and the name of the
	entity.
For a mnemonic, think
	“Parameter entities use the
	 Percent symbol”.
Example 7.9. Defining Parameter Entities
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" [
<!ENTITY % param.some "some">
<!ENTITY % param.text "text">
<!ENTITY % param.new "%param.some more %param.text">

<!-- %param.new now contains "some more text" -->
]>

7.6.3. To Do…
	Add a general entity to
	 example.xml.
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" [
<!ENTITY version "1.1">
]>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>An Example XHTML File</title>
 </head>

 <!-- There may be some comments in here as well -->

 <body>
 <p>This is a paragraph containing some text.</p>

 <p>This paragraph contains some more text.</p>

 <p align="right">This paragraph might be right-justified.</p>

 <p>The current version of this document is: &version;</p>
 </body>
</html>

	Validate the document using
	 xmllint.

	Load example.xml into a web
	 browser. It may have to be copied to
	 example.html before the browser
	 recognizes it as an XHTML
	 document.
Older browsers with simple parsers may not render this
	 file as expected. The entity reference
	 &version; may not be replaced by
	 the version number, or the XML context
	 closing]> may not be recognized and
	 instead shown in the output.

	The solution is to normalize the
	 document with an XML normalizer. The
	 normalizer reads valid XML and writes
	 equally valid XML which has been
	 transformed in some way. One way the normalizer
	 transforms the input is by expanding all the entity
	 references in the document, replacing the entities with
	 the text that they represent.
xmllint can be used for this. It
	 also has an option to drop the initial
	 DTD section so that the closing
]> does not confuse browsers:
% xmllint --noent --dropdtd example.xml > example.html
A normalized copy of the document with entities
	 expanded is produced in example.html,
	 ready to load into a web browser.

7.7. Using Entities to Include Files
Both
 general and
 parameter
 entities are particularly useful for including one file inside
 another.
7.7.1. Using General Entities to Include Files
Consider some content for an XML book
	organized into files, one file per chapter, called
	chapter1.xml,
	chapter2.xml, and so forth, with a
	book.xml that will contain these
	chapters.
In order to use the contents of these files as the values
	for entities, they are declared with the
	SYSTEM keyword. This directs the
	XML parser to include the contents of the
	named file as the value of the entity.
Example 7.10. Using General Entities to Include Files
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" [
<!ENTITY chapter.1 SYSTEM "chapter1.xml">
<!ENTITY chapter.2 SYSTEM "chapter2.xml">
<!ENTITY chapter.3 SYSTEM "chapter3.xml">
<!-- And so forth -->
]>

<html xmlns="http://www.w3.org/1999/xhtml">
 <!-- Use the entities to load in the chapters -->

 &chapter.1;
 &chapter.2;
 &chapter.3;
</html>

Warning:
When using general entities to include other files
	 within a document, the files being included
	 (chapter1.xml,
	 chapter2.xml, and so on)
	 must not start with a DOCTYPE
	 declaration. This is a syntax error because entities are
	 low-level constructs and they are resolved before any
	 parsing happens.

7.7.2. Using Parameter Entities to Include Files
Parameter entities can only be used inside an
	XML context. Including a file in an
	XML context can be used
	to ensure that general entities are reusable.
Suppose that there are many chapters in the document, and
	these chapters were reused in two different books, each book
	organizing the chapters in a different fashion.
The entities could be listed at the top of each book, but
	that quickly becomes cumbersome to manage.
Instead, place the general entity definitions inside one
	file, and use a parameter entity to include that file within
	the document.
Example 7.11. Using Parameter Entities to Include Files
Place the entity definitions in a separate file
	 called chapters.ent and
	 containing this text:
<!ENTITY chapter.1 SYSTEM "chapter1.xml">
<!ENTITY chapter.2 SYSTEM "chapter2.xml">
<!ENTITY chapter.3 SYSTEM "chapter3.xml">
Create a parameter entity to refer to the contents
	 of the file. Then use the parameter entity to load the file
	 into the document, which will then make all the general
	 entities available for use. Then use the general entities
	 as before:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" [
<!-- Define a parameter entity to load in the chapter general entities -->
<!ENTITY % chapters SYSTEM "chapters.ent">

<!-- Now use the parameter entity to load in this file -->
%chapters;
]>

<html xmlns="http://www.w3.org/1999/xhtml">
 &chapter.1;
 &chapter.2;
 &chapter.3;
</html>

7.7.3. To Do…
7.7.3.1. Use General Entities to Include Files
	Create three files, para1.xml,
	 para2.xml, and
	 para3.xml.
Put content like this in each file:
<p>This is the first paragraph.</p>

	Edit example.xml so that it
	 looks like this:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" [
<!ENTITY version "1.1">
<!ENTITY para1 SYSTEM "para1.xml">
<!ENTITY para2 SYSTEM "para2.xml">
<!ENTITY para3 SYSTEM "para3.xml">
]>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>An Example XHTML File</title>
 </head>

 <body>
 <p>The current version of this document is: &version;</p>

 ¶1;
 ¶2;
 ¶3;
 </body>
</html>

	Produce example.html by
	 normalizing example.xml.
% xmllint --dropdtd --noent example.xml > example.html

	Load example.html into the web
	 browser and confirm that the
	 paran.xml
	 files have been included in
	 example.html.

7.7.3.2. Use Parameter Entities to Include Files
Note:
The previous steps must have completed before this
	 step.

	Edit example.xml so that it
	 looks like this:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" [
<!ENTITY % entities SYSTEM "entities.ent"> %entities;
]>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>An Example XHTML File</title>
 </head>

 <body>
 <p>The current version of this document is: &version;</p>

 ¶1;
 ¶2;
 ¶3;
 </body>
</html>

	Create a new file called
	 entities.ent with this
	 content:
<!ENTITY version "1.1">
<!ENTITY para1 SYSTEM "para1.xml">
<!ENTITY para2 SYSTEM "para2.xml">
<!ENTITY para3 SYSTEM "para3.xml">

	Produce example.html by
	 normalizing example.xml.
% xmllint --dropdtd --noent example.xml > example.html

	Load example.html into the web
	 browser and confirm that the
	 paran.xml
	 files have been included in
	 example.html.

7.8. Marked Sections
XML provides a mechanism to indicate that
 particular pieces of the document should be processed in a
 special way. These are called
 “marked sections”.
Example 7.12. Structure of a Marked Section
<![KEYWORD[
 Contents of marked section
]]>

As expected of an XML construct, a marked
 section starts with <!.
The first square bracket begins the marked section.
KEYWORD describes how this marked
 section is to be processed by the parser.
The second square bracket indicates the start of the
 marked section's content.
The marked section is finished by closing the two square
 brackets, and then returning to the document context from the
 XML context with
 >.
7.8.1. Marked Section Keywords
7.8.1.1. CDATA
These keywords denote the marked sections
	 content model, and allow you to change
	 it from the default.
When an XML parser is processing a
	 document, it keeps track of the
	 “content model”.
The content model describes the
	 content the parser is expecting to see and what it will do
	 with that content.
The CDATA content model is one of the
	 most useful.
CDATA is for
	 “Character Data”. When the parser is in this
	 content model, it expects to see only characters. In this
	 model the < and
	 & symbols lose their special status,
	 and will be treated as ordinary characters.
Note:
When using CDATA in examples of
	 text marked up in XML, remember that
	 the content of CDATA is not validated.
	 The included text must be check with other means. For
	 example, the content could be written in another document,
	 validated, and then pasted into the
	 CDATA section.

Example 7.13. Using a CDATA Marked
	 Section
<para>Here is an example of how to include some text that contains
 many <literal><</literal> and <literal>&</literal>
 symbols. The sample text is a fragment of
 <acronym>XHTML</acronym>. The surrounding text (<para> and
 <programlisting>) are from DocBook.</para>

<programlisting><![CDATA[<p>This is a sample that shows some of the
 elements within <acronym>XHTML</acronym>. Since the angle
 brackets are used so many times, it is simpler to say the whole
 example is a CDATA marked section than to use the entity names for
 the left and right angle brackets throughout.</p>

 This is a listitem
 This is a second listitem
 This is a third listitem

 <p>This is the end of the example.</p>]]></programlisting>

7.8.1.2. INCLUDE and
	 IGNORE
When the keyword is INCLUDE, then the
	 contents of the marked section will be processed. When the
	 keyword is IGNORE, the marked section
	 is ignored and will not be processed. It will not appear in
	 the output.
Example 7.14. Using INCLUDE and
	 IGNORE in Marked Sections
<![INCLUDE[
 This text will be processed and included.
]]>

<![IGNORE[
 This text will not be processed or included.
]]>

By itself, this is not too useful. Text to be
	 removed from the document could be cut out, or wrapped
	 in comments.
It becomes more useful when controlled by
	 parameter
	 entities, yet this usage is limited
	 to entity files.
For example, suppose that documentation was produced in
	 a hard-copy version and an electronic version. Some extra
	 text is desired in the electronic version content that was
	 not to appear in the hard-copy.
Create an entity file that defines general entities to
	 include each chapter and guard these definitions with a
	 parameter entity that can be set to either
	 INCLUDE or IGNORE to
	 control whether the entity is defined. After these
	 conditional general entity definitions, place one more
	 definition for each general entity to set them to an empty
	 value. This technique makes use of the fact that entity
	 definitions cannot be overridden but the first definition
	 always takes effect. So the inclusion of the chapter is
	 controlled with the corresponding parameter entity. Set to
	 INCLUDE, the first general entity
	 definition will be read and the second one will be ignored.
	 Set to IGNORE, the first definition will
	 be ignored and the second one will take effect.
Example 7.15. Using a Parameter Entity to Control a Marked
	 Section
<!ENTITY % electronic.copy "INCLUDE">

<![%electronic.copy;[
<!ENTITY chap.preface	SYSTEM "preface.xml">
]]>

<!ENTITY chap.preface "">
When producing the hard-copy version, change the
	 parameter entity's definition to:
<!ENTITY % electronic.copy "IGNORE">

7.8.2. To Do…
	Modify entities.ent to
	 contain the following:
<!ENTITY version "1.1">
<!ENTITY % conditional.text "IGNORE">

<![%conditional.text;[
<!ENTITY para1 SYSTEM "para1.xml">
]]>

<!ENTITY para1 "">

<!ENTITY para2 SYSTEM "para2.xml">
<!ENTITY para3 SYSTEM "para3.xml">

	Normalize example.xml
	 and notice that the conditional text is not present in the
	 output document. Set the parameter entity
	 guard to INCLUDE and regenerate the
	 normalized document and the text will appear again.
	 This method makes sense if there are more
	 conditional chunks depending on the same condition. For
	 example, to control generating printed or online
	 text.

7.9. Conclusion
That is the conclusion of this XML
 primer. For reasons of space and complexity, several things
 have not been covered in depth (or at all). However, the
 previous sections cover enough XML to
 introduce the organization of the FDP
 documentation.
Chapter 8. XHTML Markup
8.1. Introduction
This chapter describes usage of the XHTML
 markup language used for the FreeBSD web site.
XHTML is the XML
 version of the HyperText Markup Language, the markup language of
 choice on the World Wide Web. More information can be found at
 http://www.w3.org/.
XHTML is used to mark up pages on the
 FreeBSD web site. It is usually not used to mark up other
 documentation, since DocBook offers a far richer set of elements
 from which to choose. Consequently, XHTML
 pages will normally only be encountered when writing for the web
 site.
HTML has gone through a number of
 versions. The XML-compliant version
 described here is called XHTML. The latest
 widespread version is XHTML 1.0, available in
 both strict and
 transitional variants.
The XHTML DTDs are
 available from the Ports Collection in
 textproc/xhtml. They are
 automatically installed by the textproc/docproj port.
Note:
This is not an exhaustive list of
	elements, since that would just repeat the documentation for
	XHTML. The aim is to list those elements
	most commonly used. Please post questions about elements or
	uses not covered here to the FreeBSD documentation project mailing list.

Inline Versus Block:
In the remainder of this document, when describing
	elements, inline means that the element
	can occur within a block element, and does not cause a line
	break. A block element, by comparison,
	will cause a line break (and other processing) when it is
	encountered.

8.2. Formal Public Identifier (FPI)
There are a number of XHTML
 FPIs, depending upon the version, or
 level of XHTML to which
 a document conforms. Most XHTML documents on
 the FreeBSD web site comply with the transitional version of
 XHTML 1.0.
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
8.3. Sectional Elements
An XHTML document is normally split into
 two sections. The first section, called the
 head, contains meta-information about the
 document, such as its title, the name of the author, the parent
 document, and so on. The second section, the
 body, contains content that will be
 displayed to the user.
These sections are indicated with head
 and body elements respectively. These
 elements are contained within the top-level
 html element.
Example 8.1. Normal XHTML Document
	Structure
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
	 <title>The Document's Title</title>
 </head>

 <body>

 …

 </body>
</html>

8.4. Block Elements
8.4.1. Headings
XHTML has tags to denote headings in
	the document at up to six different levels.
The largest and most prominent heading is
	h1, then h2,
	continuing down to h6.
The element's content is the text of the heading.
Example 8.2. h1, h2,
	 and Other Header Tags
Usage:
<h1>First section</h1>

<!-- Document introduction goes here -->

<h2>This is the heading for the first section</h2>

<!-- Content for the first section goes here -->

<h3>This is the heading for the first sub-section</h3>

<!-- Content for the first sub-section goes here -->

<h2>This is the heading for the second section</h2>

<!-- Content for the second section goes here -->

Generally, an XHTML page should have
	one first level heading (h1). This can
	contain many second level headings (h2),
	which can in turn contain many third level headings. Do not
	leave gaps in the numbering.
8.4.2. Paragraphs
XHTML supports a single paragraph
	element, p.
Example 8.3. p Example
Usage:
<p>This is a paragraph. It can contain just about any
 other element.</p>

8.4.3. Block Quotations
A block quotation is an extended quotation from another
	document that will appear in a separate paragraph.
Example 8.4. blockquote Example
Usage:
<p>A small excerpt from the US Constitution:</p>

<blockquote>We the People of the United States, in Order to form
 a more perfect Union, establish Justice, insure domestic
 Tranquility, provide for the common defence, promote the general
 Welfare, and secure the Blessings of Liberty to ourselves and our
 Posterity, do ordain and establish this Constitution for the
 United States of America.</blockquote>

8.4.4. Lists
XHTML can present the user with three
	types of lists: ordered, unordered, and definition.
Entries in an ordered list will be numbered, while entries
	in an unordered list will be preceded by bullet points.
	Definition lists have two sections for each entry. The first
	section is the term being defined, and the second section is
	the definition.
Ordered lists are indicated by the ol
	element, unordered lists by the ul
	element, and definition lists by the dl
	element.
Ordered and unordered lists contain listitems, indicated
	by the li element. A listitem can
	contain textual content, or it may be further wrapped in one
	or more p elements.
Definition lists contain definition terms
	(dt) and definition descriptions
	(dd). A definition term can only contain
	inline elements. A definition description can contain other
	block elements.
Example 8.5. ul and
	 ol Example
Usage:
<p>An unordered list. Listitems will probably be
 preceded by bullets.</p>

 First item

 Second item

 Third item

<p>An ordered list, with list items consisting of multiple
 paragraphs. Each item (note: not each paragraph) will be
 numbered.</p>

 <p>This is the first item. It only has one paragraph.</p>

 <p>This is the first paragraph of the second item.</p>

 <p>This is the second paragraph of the second item.</p>

 <p>This is the first and only paragraph of the third
 item.</p>

Example 8.6. Definition Lists with dl
Usage:
<dl>
 <dt>Term 1</dt>

 <dd><p>Paragraph 1 of definition 1.</p>

 <p>Paragraph 2 of definition 1.</p></dd>

 <dt>Term 2</dt>

 <dd><p>Paragraph 1 of definition 2.</p></dd>

 <dt>Term 3</dt>

 <dd><p>Paragraph 1 of definition 3.</p></dd>
</dl>

8.4.5. Pre-formatted Text
Pre-formatted text is shown to the user exactly as it is
	in the file. Text is shown in a fixed font. Multiple spaces
	and line breaks are shown exactly as they are in the
	file.
Wrap pre-formatted text in the pre
	element.
Example 8.7. pre Example
For example, the pre tags could be
	 used to mark up an email message:
<pre> From: nik@FreeBSD.org
 To: freebsd-doc@FreeBSD.org
 Subject: New documentation available

 There is a new copy of my primer for contributors to the FreeBSD
 Documentation Project available at

 <URL:https://people.FreeBSD.org/~nik/primer/index.html>

 Comments appreciated.

 N</pre>
Keep in mind that < and
	 & still are recognized as special
	 characters in pre-formatted text. This is why the example
	 shown had to use < instead of
	 <. For consistency,
	 > was used in place of
	 >, too. Watch out for the special
	 characters that may appear in text copied from a plain-text
	 source, like an email message or program code.

8.4.6. Tables
Mark up tabular information using the
	table element. A table consists of one or
	more table rows (tr), each containing one
	or more cells of table data (td). Each
	cell can contain other block elements, such as paragraphs or
	lists. It can also contain another table (this nesting can
	repeat indefinitely). If the cell only contains one paragraph
	then the pelement is not needed.
Example 8.8. Simple Use of table
Usage:
<p>This is a simple 2x2 table.</p>

<table>
 <tr>
 <td>Top left cell</td>

 <td>Top right cell</td>
 </tr>

 <tr>
 <td>Bottom left cell</td>

 <td>Bottom right cell</td>
 </tr>
</table>

A cell can span multiple rows and columns by adding the
	rowspan or
	colspan attributes with
	values for the number of rows or columns to be spanned.
Example 8.9. Using
	 rowspan
Usage:
<p>One tall thin cell on the left, two short cells next to
 it on the right.</p>

<table>
 <tr>
 <td rowspan="2">Long and thin</td>
 </tr>

 <tr>
 <td>Top cell</td>

 <td>Bottom cell</td>
 </tr>
</table>

Example 8.10. Using
	 colspan
Usage:
<p>One long cell on top, two short cells below it.</p>

<table>
 <tr>
 <td colspan="2">Top cell</td>
 </tr>

 <tr>
 <td>Bottom left cell</td>

 <td>Bottom right cell</td>
 </tr>
</table>

Example 8.11. Using rowspan and
	 colspan
	 Together
Usage:
<p>On a 3x3 grid, the top left block is a 2x2 set of
 cells merged into one. The other cells are normal.</p>

<table>
 <tr>
 <td colspan="2" rowspan="2">Top left large cell</td>

 <td>Top right cell</td>
 </tr>

 <tr>
 <!-- Because the large cell on the left merges into
 this row, the first <td> will occur on its
 right -->

 <td>Middle right cell</td>
 </tr>

 <tr>
 <td>Bottom left cell</td>

 <td>Bottom middle cell</td>

 <td>Bottom right cell</td>
 </tr>
</table>

8.5. In-line Elements
8.5.1. Emphasizing Information
Two levels of emphasis are available in
	XHTML, em and
	strong. em is for a
	normal level of emphasis and strong
	indicates stronger emphasis.
em is typically rendered in italic
	and strong is rendered in bold. This is
	not always the case, and should not be relied upon. According
	to best practices, web pages only hold structural and
	semantical information, and stylesheets are later applied to
	them. Think of semantics, not formatting, when using these
	tags.
Example 8.12. em and
	 strong Example
Usage:
<p>This has been emphasized, while
 this has been strongly emphasized.</p>

8.5.2. Indicating Fixed-Pitch Text
Content that should be rendered in a fixed pitch
	(typewriter) typeface is tagged with tt
	(for “teletype”).
Example 8.13. tt Example
Usage:
<p>Many system settings are stored in
 <tt>/etc</tt>.</p>

8.5.3. Links
Note:
Links are also inline elements.

8.5.3.1. Linking to Other Documents on the Web
A link points to the URL of a
	 document on the web. The link is indicated with
	 a, and the
	 href attribute contains
	 the URL of the target document. The
	 content of the element becomes the link, indicated to the
	 user by showing it in a different color or with an
	 underline.
Example 8.14. Using
	
Usage:
<p>More information is available at the
 &os; web site.</p>

This link always takes the user to the top of the linked
	 document.
8.5.3.2. Linking to Specific Parts of Documents
To link to a specific point within a document, that
	 document must include an anchor at the
	 desired point. Anchors are included by setting the
	 id attribute of an
	 element to a name. This example creates an anchor by
	 setting the id
	 attribute of a p
	 element.
Example 8.15. Creating an Anchor
Usage:
<p id="samplepara">This paragraph can be referenced
 in other links with the name <tt>samplepara</tt>.</p>

Links to anchors are similar to plain links, but include
	 a # symbol and the anchor's
	 ID at the end of the
	 URL.
Example 8.16. Linking to a Named Part of a Different
	 Document
The samplepara example is part of a
	 document called foo.html. A link to
	 that specific paragraph in the document is constructed in
	 this example.
<p>More information can be found in the
 sample paragraph of
 <tt>foo.html</tt>.</p>

To link to a named anchor within the same document, omit
	 the document's URL, and just use the
	 # symbol followed by the name of the
	 anchor.
Example 8.17. Linking to a Named Part of the Same Document
The samplepara example
	 resides in this document. To link to it:
<p>More information can be found in the
 sample paragraph of this
 document.</p>

Chapter 9. DocBook Markup
9.1. Introduction
This chapter is an introduction to DocBook as it is used for
 FreeBSD documentation. DocBook is a large and complex markup
 system, but the subset described here covers the parts that are
 most widely used for FreeBSD documentation. While a moderate
 subset is covered, it is impossible to anticipate every
 situation. Please post questions that this document does
 not answer to the FreeBSD documentation project mailing list.
DocBook was originally developed by HaL Computer Systems and
 O'Reilly & Associates to be a Document Type Definition
 (DTD) for writing technical documentation
 [1].
 Since 1998 it is maintained by the
	DocBook Technical Committee. As such, and unlike
 LinuxDoc and XHTML, DocBook is very heavily
 oriented towards markup that describes what
 something is, rather than describing how it
 should be presented.
The DocBook DTD is available from the
 Ports Collection in the
 textproc/docbook-xml
 port. It is automatically installed as part of the
 textproc/docproj
 port.
Formal Versus Informal:
Some elements may exist in two forms,
	formal and informal.
	Typically, the formal version of the element will consist of a
	title followed by the informal version of the element. The
	informal version will not have a title.

Inline Versus Block:
In the remainder of this document, when describing
	elements, inline means that the element
	can occur within a block element, and does not cause a line
	break. A block element, by comparison,
	will cause a line break (and other processing) when it is
	encountered.

[1] A short history can be found under http://www.oasis-open.org/docbook/intro.shtml#d0e41.

9.2. FreeBSD Extensions
The FreeBSD Documentation Project has extended the DocBook
 DTD with additional elements and entities.
 These additions serve to make some of the markup easier or more
 precise.
Throughout the rest of this document, the term
 “DocBook” is used to mean the FreeBSD-extended
 DocBook DTD.
Note:
Most of these extensions are not unique to FreeBSD, it was
	just felt that they were useful enhancements for this
	particular project. Should anyone from any of the other *nix
	camps (NetBSD, OpenBSD, Linux, …) be interested in
	collaborating on a standard DocBook extension set, please
	contact Documentation Engineering Team <doceng@FreeBSD.org>.

9.2.1. FreeBSD Elements
The additional FreeBSD elements are not (currently) in the
	Ports Collection. They are stored in the FreeBSD Subversion
	tree, as head/share/xml/freebsd.dtd.
FreeBSD-specific elements used in the examples below are
	clearly marked.
9.2.2. FreeBSD Entities
This table shows some of the most useful entities
	available in the FDP. For a complete list,
	see the *.ent files in
	doc/share/xml.
	 	 	
	FreeBSD
		 Name Entities
	&os;	FreeBSD	
	&os.stable;	FreeBSD-STABLE	
	&os.current;	FreeBSD-CURRENT	
	 	 	
	Manual Page
		Entities
	&man.ls.1;	ls(1)	Usage: &man.ls.1; is the manual page
		 for
		 <command>ls</command>.
	&man.cp.1;	cp(1)	Usage: The manual page for
		 <command>cp</command> is
		 &man.cp.1;.
	&man.command.sectionnumber;	link to
		 command manual page in
		 section
		 sectionnumber	Entities are defined for all the
		FreeBSD manual
		 pages.
	 	 	
	FreeBSD Mailing List
		Entities
	&a.doc;	FreeBSD documentation project mailing list	Usage: A link to the
		 &a.doc;.
	&a.questions;	FreeBSD general questions mailing list	Usage: A link to the
		 &a.questions;.
	&a.listname;	link to
		 listname	Entities are defined for all the FreeBSD
		 mailing lists.
	 	 	
	FreeBSD Document
		Link Entities
	&url.books.handbook;	../../../../doc/en_US.ISO8859-1/books/handbook	Usage: A link to the <link
		 xlink:href="&url.books.handbook;/advanced-networking.html">Advanced
		 Networking</link> chapter of the
		 Handbook.
	&url.books.bookname;	relative path to
		 bookname	Entities are defined for all the FreeBSD
		 books.
	&url.articles.committers-guide;	../../../../doc/en_US.ISO8859-1/articles/committers-guide	Usage: A link to the <link
		 xlink:href="&url.articles.committers-guide;">Committer's
		 Guide</link>
		 article.
	&url.articles.articlename;	relative path to
		 articlename	Entities are defined for all the FreeBSD
		 articles.
	 	 	
	Other Operating
		System Name Entities
	&linux;	Linux®	The Linux® operating system.
	&unix;	UNIX®	The UNIX® operating system.
	&windows;	Windows®	The Windows® operating system.
	 	 	
	Miscellaneous
		Entities
	&prompt.root;	#	The root user
		prompt.
	&prompt.user;	%	A prompt for an unprivileged user.
	&postscript;	PostScript®	The
		PostScript® programming language.
	&tex;	TeX	The
		TeX typesetting language.
	&xorg;	Xorg	The Xorg open source X
		Window System.

9.3. Formal Public Identifier (FPI)
In compliance with the DocBook guidelines for writing
 FPIs for DocBook customizations, the
 FPI for the FreeBSD extended DocBook
 DTD is:
PUBLIC "-//FreeBSD//DTD DocBook V4.2-Based Extension//EN"
9.4. Document Structure
DocBook allows structuring documentation in several ways.
 The FreeBSD Documentation Project uses two primary types of DocBook
 document: the book and the article.
Books are organized into chapters.
 This is a mandatory requirement. There may be
 parts between the book and the chapter to
 provide another layer of organization. For example, the
 Handbook is arranged in this way.
A chapter may (or may not) contain one or more sections.
 These are indicated with the sect1 element.
 If a section contains another section then use the
 sect2 element, and so on, up to
 sect5.
Chapters and sections contain the remainder of the
 content.
An article is simpler than a book, and does not use
 chapters. Instead, the content of an article is organized into
 one or more sections, using the same sect1
 (and sect2 and so on) elements that are used
 in books.
The nature of the document being written should be used to
 determine whether it is best marked up as a book or an article.
 Articles are well suited to information that does not need to be
 broken down into several chapters, and that is, relatively
 speaking, quite short, at up to 20-25 pages of content. Books
 are best suited to information that can be broken up into
 several chapters, possibly with appendices and similar content
 as well.
The FreeBSD
	tutorials are all marked up as articles, while this
 document, the FAQ,
 and the Handbook are all marked up as books, for
 example.
9.4.1. Starting a Book
The content of a book is contained within the
	book element. As well as containing
	structural markup, this element can contain elements that
	include additional information about the book. This is either
	meta-information, used for reference purposes, or additional
	content used to produce a title page.
This additional information is contained within
	info.
Example 9.1. Boilerplate book with
	 info
<book>
 <info>
 <title>Your Title Here</title>

 <author>
 <personname>
 <firstname>Your first name</firstname>
 <surname>Your surname</surname>
 </personname>

 <affiliation>
	<address>
 <email>Your email address</email>
	</address>
 </affiliation>
 </author>

 <copyright>
 <year>1998</year>
 <holder role="mailto:your email address">Your name</holder>
 </copyright>

 <releaseinfo>$FreeBSD$</releaseinfo>

 <abstract>
 <para>Include an abstract of the book's contents here.</para>
 </abstract>
 </info>

 …

</book>

9.4.2. Starting an Article
The content of the article is contained within the
	article element. As well as containing
	structural markup, this element can contain elements that
	include additional information about the article. This is
	either meta-information, used for reference purposes, or
	additional content used to produce a title page.
This additional information is contained within
	info.
Example 9.2. Boilerplate article with
	 info
<article>
 <info>
 <title>Your title here</title>

 <author>
 <personname>
	<firstname>Your first name</firstname>
	<surname>Your surname</surname>
 </personname>

 <affiliation>
	<address>
	 <email>Your email address</email></address>
	</address>
 </affiliation>
 </author>

 <copyright>
 <year>1998</year>
 <holder role="mailto:your email address">Your name</holder>
 </copyright>

 <releaseinfo>$FreeBSD$</releaseinfo>

 <abstract>
 <para>Include an abstract of the article's contents here.</para>
 </abstract>
 </info>

 …

</article>

9.4.3. Indicating Chapters
Use chapter to mark up your chapters.
	Each chapter has a mandatory title.
	Articles do not contain chapters, they are reserved for
	books.
Example 9.3. A Simple Chapter
<chapter>
 <title>The Chapter's Title</title>

 ...
</chapter>

A chapter cannot be empty; it must contain elements in
	 addition to title. If you need to
	 include an empty chapter then just use an empty
	 paragraph.
Example 9.4. Empty Chapters
<chapter>
 <title>This is An Empty Chapter</title>

 <para></para>
</chapter>

9.4.4. Sections Below Chapters
In books, chapters may (but do not need to) be broken up
	into sections, subsections, and so on. In articles, sections
	are the main structural element, and each article must contain
	at least one section. Use the
	sectn element.
	The n indicates the section number,
	which identifies the section level.
The first
	sectn is
	sect1. You can have one or more of these
	in a chapter. They can contain one or more
	sect2 elements, and so on, down to
	sect5.
Example 9.5. Sections in Chapters
<chapter>
 <title>A Sample Chapter</title>

 <para>Some text in the chapter.</para>

 <sect1>
 <title>First Section</title>

 …
 </sect1>

 <sect1>
 <title>Second Section</title>

 <sect2>
 <title>First Sub-Section</title>

 <sect3>
	<title>First Sub-Sub-Section</title>

	…
 </sect3>
 </sect2>

 <sect2>
 <title>Second Sub-Section (1.2.2)</title>

 …
 </sect2>
 </sect1>
</chapter>

Note:
Section numbers are automatically generated and
	 prepended to titles when the document is rendered to an
	 output format. The generated section numbers and titles
	 from the example above will be:
	1.1. First Section

	1.2. Second Section

	1.2.1. First Sub-Section

	1.2.1.1. First Sub-Sub-Section

	1.2.2. Second Sub-Section

9.4.5. Subdividing Using part
	Elements
parts introduce another level of
	organization between book and
	chapter with one or more
	parts. This cannot be done in an
	article.
<part>
 <title>Introduction</title>

 <chapter>
 <title>Overview</title>

 ...
 </chapter>

 <chapter>
 <title>What is FreeBSD?</title>

 ...
 </chapter>

 <chapter>
 <title>History</title>

 ...
 </chapter>
</part>
9.5. Block Elements
9.5.1. Paragraphs
DocBook supports three types of paragraphs:
	formalpara, para, and
	simpara.
Almost all paragraphs in FreeBSD documentation use
	para. formalpara
	includes a title element, and
	simpara disallows some elements from
	within para. Stick with
	para.
Example 9.6. para Example
Usage:
<para>This is a paragraph. It can contain just about any
 other element.</para>
Appearance:
This is a paragraph. It can contain just about any
	 other element.

9.5.2. Block Quotations
A block quotation is an extended quotation from another
	document that should not appear within the current paragraph.
	These are rarely needed.
Blockquotes can optionally contain a title and an
	attribution (or they can be left untitled and
	unattributed).
Example 9.7. blockquote Example
Usage:
<para>A small excerpt from the US Constitution:</para>

<blockquote>
 <title>Preamble to the Constitution of the United States</title>

 <attribution>Copied from a web site somewhere</attribution>

 <para>We the People of the United States, in Order to form a more
 perfect Union, establish Justice, insure domestic Tranquility,
 provide for the common defence, promote the general Welfare, and
 secure the Blessings of Liberty to ourselves and our Posterity, do
 ordain and establish this Constitution for the United States of
 America.</para>
</blockquote>
Appearance:
A small excerpt from the US Constitution:
	 	Preamble to the Constitution of the United
	 States
We the People of the United States, in Order to form
	 a more perfect Union, establish Justice, insure domestic
	 Tranquility, provide for the common defence, promote the
	 general Welfare, and secure the Blessings of Liberty to
	 ourselves and our Posterity, do ordain and establish
	 this Constitution for the United States of
	 America.
	
	 	--Copied from a web site
	 somewhere

9.5.3. Tips, Notes, Warnings, Cautions, and Important
	Information
Extra information may need to be separated from
	the main body of the text. Typically this is
	“meta” information of which the user should be
	aware.
Several types of admonitions are available:
	tip, note,
	warning, caution, and
	important.
Which admonition to choose depends on the situation.
	The DocBook
	documentation suggests:
	Note is for information that should be heeded by
	 all readers.

	Important is a variation on Note.

	Caution is for information regarding possible data
	 loss or software damage.

	Warning is for information regarding possible
	 hardware damage or injury to life or limb.

Example 9.8. tip and important Example
Usage:
<tip>
 <para>&os; may reduce stress.</para>
</tip>

<important>
 <para>Please use admonitions sparingly. Too many admonitions
 are visually jarring and can have the opposite of the
 intended effect.</para>
</important>

Appearance:
Tip:
FreeBSD may reduce stress.

Important:
Please use admonitions sparingly. Too many admonitions
	 are visually jarring and can have the opposite of the
	 intended effect.

9.5.4. Examples
Examples can be shown with example.
Example 9.9. example Source
Usage:
<example>
 <para>Empty files can be created easily:</para>

 <screen>&prompt.user; <userinput>touch file1 file2 file3</userinput></screen>
</example>

Appearance:
Example 9.10. Rendered example
Empty files can be created easily:
% touch file1 file2 file3

9.5.5. Lists and Procedures
Information often needs to be presented as lists, or as a
	number of steps that must be carried out in order to
	accomplish a particular goal.
To do this, use itemizedlist,
	orderedlist, variablelist, or
	procedure. There are other types of list
	elements in DocBook, but we will not cover them here.
itemizedlist and
	orderedlist are similar to their
	counterparts in HTML, ul
	and ol. Each one consists of one or more
	listitem elements, and each
	listitem contains one or more block
	elements. The listitem elements are
	analogous to HTML's li
	tags. However, unlike HTML, they are required.
Example 9.11. itemizedlist and
	 orderedlist Example
Usage:
<itemizedlist>
 <listitem>
 <para>This is the first itemized item.</para>
 </listitem>

 <listitem>
 <para>This is the second itemized item.</para>
 </listitem>
</itemizedlist>

<orderedlist>
 <listitem>
 <para>This is the first ordered item.</para>
 </listitem>

 <listitem>
 <para>This is the second ordered item.</para>
 </listitem>
</orderedlist>
Appearance:
	This is the first itemized item.

	This is the second itemized item.

	This is the first ordered item.

	This is the second ordered item.

An alternate and often
	useful way of presenting information is the
	variablelist. These are lists where each entry has
	a term and a description. They are well suited for many types
	of descriptions, and present information in a form that is
	often easier for the reader than sections and
	subsections.
A variablelist has a title, and then
	pairs of term and listitem
	entries.
Example 9.12. variablelist Example
Usage:
<variablelist>
 <varlistentry>
 <term>Parallel</term>

 <listitem>
 <para>In parallel communications, groups of bits arrive
	at the same time over multiple communications
	channels.</para>
 </listitem>
 </varlistentry>

 <varlistentry>
 <term>Serial</term>

 <listitem>
 <para>In serial communications, bits arrive one at a
	time over a single communications
	channel.</para>
 </listitem>
 </varlistentry>
</variablelist>
Appearance:
	Parallel
	In parallel communications, groups of bits arrive
		at the same time over multiple communications
		channels.

	Serial
	In serial communications, bits arrive one at a
		time over a single communications channel.

A procedure shows a series of
	steps, which may in turn
	consist of more steps or
	substeps. Each step
	contains block elements and may include an optional title.
Sometimes, steps are not sequential, but present a choice:
	do this or do that,
	but not both. For these alternative choices, use
	stepalternatives.
Example 9.13. procedure Example
Usage:
<procedure>
 <step>
 <para>Do this.</para>
 </step>

 <step>
 <para>Then do this.</para>
 </step>

 <step>
 <substeps>
 <step>
 <para>And now do this smaller thing.</para>
 </step>

 <step>
 <para>And now do this other smaller thing.</para>
 </step>
 </substeps>
 </step>

 <step>
 <para>Finally, do one of these:</para>

 <stepalternatives>
 <step>
	<para>Go left.</para>
 </step>

 <step>
	<para>Go right.</para>
 </step>
 </stepalternatives>
 </step>
</procedure>
Appearance:
	Do this.

	Then do this.

		And now do this small thing.

	And this other small thing.

	Finally, do one of these:

	 	Go left.

	 	Go right.

	

9.5.6. Showing File Samples
Fragments of a file (or perhaps a complete file) are shown
	by wrapping them in the programlisting
	element.
White space and line breaks within
	programlisting are
	significant. In particular, this means that the opening tag
	should appear on the same line as the first line of the
	output, and the closing tag should appear on the same line
	as the last line of the output, otherwise spurious blank
	lines may be included.
Example 9.14. programlisting Example
Usage:
<para>When finished, the program will look like
 this:</para>

<programlisting>#include <stdio.h>

int
main(void)
{
 printf("hello, world\n");
 return 0;
}</programlisting>
Notice how the angle brackets in the
	 #include line need to be referenced by
	 their entities instead of being included literally.
Appearance:
When finished, the program will look like this:
#include <stdio.h>

int
main(void)
{
 printf("hello, world\n");
 return 0;
}

9.5.7. Callouts
A callout is a visual marker for referring to a
	piece of text or specific position within an
	example.
Callouts are marked with the co
	element. Each element must have a unique
	id assigned to it. After the example,
	include a calloutlist that describes each
	callout.
Example 9.15. co and
	 calloutlist Example
<para>When finished, the program will look like
 this:</para>

<programlisting>#include <stdio.h> <co xml:id="co-ex-include"/>

int <co xml:id="co-ex-return"/>
main(void)
{
 printf("hello, world\n"); <co xml:id="co-ex-printf"/>
}</programlisting>

<calloutlist>
 <callout arearefs="co-ex-include">
 <para>Includes the standard IO header file.</para>
 </callout>

 <callout arearefs="co-ex-return">
 <para>Specifies that <function>main()</function> returns an
 int.</para>
 </callout>

 <callout arearefs="co-ex-printf">
 <para>The <function>printf()</function> call that writes
 <literal>hello, world</literal> to standard output.</para>
 </callout>
</calloutlist>
Appearance:
When finished, the program will look like this:
#include <stdio.h> [image: 1]

int [image: 2]
main(void)
{
 printf("hello, world\n"); [image: 3]
}
	[image: 1]
	Includes the standard IO header file.

	[image: 2]
	Specifies that main() returns
	 an int.

	[image: 3]
	The printf() call that writes
	 hello, world to standard
	 output.

9.5.8. Tables
Unlike HTML, DocBook does not need
	tables for layout purposes, as the stylesheet handles those
	issues. Instead, just use tables for marking up tabular
	data.
In general terms (and see the DocBook documentation for
	more detail) a table (which can be either formal or informal)
	consists of a table element. This contains
	at least one tgroup element, which
	specifies (as an attribute) the number of columns in this
	table group. Within the tablegroup there is one
	thead element, which contains elements for
	the table headings (column headings), and one
	tbody which contains the body of the
	table.
Both tgroup and
	thead contain row
	elements, which in turn contain entry
	elements. Each entry element specifies
	one cell in the table.
Example 9.16. informaltable Example
Usage:
<informaltable pgwide="1">
 <tgroup cols="2">
 <thead>
 <row>
 <entry>This is Column Head 1</entry>
 <entry>This is Column Head 2</entry>
 </row>
 </thead>

 <tbody>
 <row>
	<entry>Row 1, column 1</entry>
	<entry>Row 1, column 2</entry>
 </row>

 <row>
	<entry>Row 2, column 1</entry>
	<entry>Row 2, column 2</entry>
 </row>
 </tbody>
 </tgroup>
</informaltable>
Appearance:
	This is Column Head 1	This is Column Head 2
	Row 1, column 1	Row 1, column 2
	Row 2, column 1	Row 2, column 2

Always use the pgwide attribute with
	a value of 1 with the
	informaltable element. A bug in Internet
	Explorer can cause the table to render incorrectly if this
	is omitted.
Table borders can be suppressed by setting the
	frame attribute to none
	in the informaltable element. For example,
	informaltable frame="none".
Example 9.17. Table with frame="none" Example
Appearance:
	This is Column Head 1	This is Column Head 2
	Row 1, column 1	Row 1, column 2
	Row 2, column 1	Row 2, column 2

9.5.9. Examples for the User to Follow
Examples for the user to follow are often necessary.
	Typically, these will consist of dialogs with the computer;
	the user types in a command, the user gets a response back,
	the user types another command, and so on.
A number of distinct elements and entities come into
	play here.
	screen
	Everything the user sees in this example will be
	 on the computer screen, so the next element is
	 screen.
Within screen, white space is
	 significant.

	prompt,
	 &prompt.root; and
	 &prompt.user;
	Some of the things the user will be seeing on the
	 screen are prompts from the computer (either from the
	 operating system, command shell, or application). These
	 should be marked up using
	 prompt.
As a special case, the two shell prompts for the
	 normal user and the root user have been provided as
	 entities. To indicate the user is at a shell prompt,
	 use one of &prompt.root; and
	 &prompt.user; as necessary. They
	 do not need to be inside
	 prompt.
Note:
&prompt.root; and
		&prompt.user; are FreeBSD
		extensions to DocBook, and are not part of the
		original DTD.

	userinput
	When displaying text that the user should type in,
	 wrap it in userinput tags. It will
	 be displayed differently than system output text.

Example 9.18. screen, prompt,
	 and userinput Example
Usage:
<screen>&prompt.user; <userinput>ls -1</userinput>
foo1
foo2
foo3
&prompt.user; <userinput>ls -1 | grep foo2</userinput>
foo2
&prompt.user; <userinput>su</userinput>
<prompt>Password: </prompt>
&prompt.root; <userinput>cat foo2</userinput>
This is the file called 'foo2'</screen>
Appearance:
% ls -1
foo1
foo2
foo3
% ls -1 | grep foo2
foo2
% su
Password:
cat foo2
This is the file called 'foo2'

Note:
Even though we are displaying the contents of the file
	 foo2, it is not
	 marked up as programlisting. Reserve
	 programlisting for showing fragments of
	 files outside the context of user actions.

9.6. In-line Elements
9.6.1. Emphasizing Information
To emphasize a particular word or phrase, use
	emphasis. This may be presented as
	italic, or bold, or might be spoken differently with a
	text-to-speech system.
There is no way to change the presentation of the
	emphasis within the document, no equivalent of
	HTML's b and
	i. If the information being presented is
	important, then consider presenting it in
	important rather than
	emphasis.
Example 9.19. emphasis Example
Usage:
<para>&os; is without doubt <emphasis>the</emphasis>
 premiere &unix;-like operating system for the Intel
 architecture.</para>
Appearance:
FreeBSD is without doubt the
	 premiere UNIX®-like operating system for the Intel
	 architecture.

9.6.2. Acronyms
Many computer terms are acronyms,
	words formed from the first letter of each word in a
	phrase. Acronyms are marked up into
	acronym elements. It is helpful to the
	reader when an acronym is defined on the first use, as shown
	in the example below.
Example 9.20. acronym Example
Usage:
<para>Request For Comments (<acronym>RFC</acronym>) 1149
 defined the use of avian carriers for transmission of
 Internet Protocol (<acronym>IP</acronym>) data. The
 quantity of <acronym>IP</acronym> data currently
 transmitted in that manner is unknown.</para>
Appearance:
Request For Comments (RFC) 1149
	 defined the use of avian carriers for transmission of
	 Internet Protocol (IP) data. The
	 quantity of IP data currently
	 transmitted in that manner is unknown.

9.6.3. Quotations
To quote text from another document or source, or to
	denote a phrase that is used figuratively, use
	quote. Most of the markup tags available
	for normal text are also available from within a
	quote.
Example 9.21. quote Example
Usage:
<para>However, make sure that the search does not go beyond the
 <quote>boundary between local and public administration</quote>,
 as <acronym>RFC</acronym> 1535 calls it.</para>
Appearance:
However, make sure that the search does not go beyond
	 the “boundary between local and public
	 administration”, as RFC 1535
	 calls it.

9.6.4. Keys, Mouse Buttons, and Combinations
To refer to a specific key on the keyboard, use
	keycap. To refer to a mouse button, use
	mousebutton. And to refer to
	combinations of key presses or mouse clicks, wrap them all
	in keycombo.
keycombo has an attribute called
	action, which may be one of
	click, double-click,
	other, press,
	seq, or simul. The
	last two values denote whether the keys or buttons should be
	pressed in sequence, or simultaneously.
The stylesheets automatically add any connecting
	symbols, such as +, between the key
	names, when wrapped in keycombo.
Example 9.22. Keys, Mouse Buttons, and Combinations Example
Usage:
<para>To switch to the second virtual terminal, press
 <keycombo action="simul"><keycap>Alt</keycap>
 <keycap>F1</keycap></keycombo>.</para>

<para>To exit <command>vi</command> without saving changes, type
 <keycombo action="seq"><keycap>Esc</keycap><keycap>:</keycap>
 <keycap>q</keycap><keycap>!</keycap></keycombo>.</para>

<para>My window manager is configured so that
 <keycombo action="simul"><keycap>Alt</keycap>
 <mousebutton>right</mousebutton>
 </keycombo> mouse button is used to move windows.</para>
Appearance:
To switch to the second virtual terminal, press
	 Alt+F1.
To exit vi without saving changes,
	 type Esc : q !.
My window manager is configured so that
	 Alt+right mouse button
	 is used to move windows.

9.6.5. Applications, Commands, Options, and Cites
Both applications and commands are frequently referred to
	when writing documentation. The distinction between them is
	that an application is the name of a program or suite of
	programs that fulfill a particular task. A command is the
	filename of a program that the user can type and run at a
	command line.
It is often necessary to show some of the options that a
	command might take.
Finally, it is often useful to list a command with its
	manual section number, in the “command(number)”
	format so common in Unix manuals.
Mark up application names with
	application.
To list a command with its manual section
	number (which should be most of the time) the DocBook
	element is citerefentry. This will
	contain a further two elements,
	refentrytitle and
	manvolnum. The content of
	refentrytitle is the name of the command,
	and the content of manvolnum is the
	manual page section.
This can be cumbersome to write, and so a series of
	general
	 entities have been created to make this easier.
	Each entity takes the form
	&man.manual-page.manual-section;.
The file that contains these entities is in
	doc/share/xml/man-refs.ent, and can be
	referred to using this FPI:
PUBLIC "-//FreeBSD//ENTITIES DocBook Manual Page Entities//EN"
Therefore, the introduction to FreeBSD documentation will
	usually include this:
<!DOCTYPE book PUBLIC "-//FreeBSD//DTD DocBook V4.1-Based Extension//EN" [

<!ENTITY % man PUBLIC "-//FreeBSD//ENTITIES DocBook Manual Page Entities//EN">
%man;

…

]>
Use command to include a command
	name “in-line” but present it as something the
	user should type.
Use option to mark up the options
	which will be passed to a command.
When referring to the same command multiple times in
	close proximity, it is preferred to use the
	&man.command.section;
	notation to markup the first reference and use
	command to markup subsequent references.
	This makes the generated output, especially
	HTML, appear visually better.
Example 9.23. Applications, Commands, and Options Example
Usage:
<para><application>Sendmail</application> is the most
 widely used Unix mail application.<para>

<para><application>Sendmail</application> includes the
 <citerefentry>
 <refentrytitle>sendmail</refentrytitle>
 <manvolnum>8</manvolnum>
 </citerefentry>, &man.mailq.1;, and &man.newaliases.1;
 programs.</para>

<para>One of the command line parameters to <citerefentry>
 <refentrytitle>sendmail</refentrytitle>
 <manvolnum>8</manvolnum>
 </citerefentry>, <option>-bp</option>, will display the current
 status of messages in the mail queue. Check this on the command
 line by running <command>sendmail -bp</command>.</para>
Appearance:
Sendmail is the most widely
	 used Unix mail application.
Sendmail includes the
	 sendmail(8), mailq(1), and newaliases(1)
	 programs.
One of the command line parameters to
	 sendmail(8), -bp, will display the
	 current status of messages in the mail queue. Check this
	 on the command line by running
	 sendmail -bp.

Note:
Notice how the
	 &man.command.section;
	 notation is easier to follow.

9.6.6. Files, Directories, Extensions, Device Names
To refer to the name of a file, a directory, a file
	extension, or a device name, use filename.
Example 9.24. filename Example
Usage:
<para>The source for the Handbook in English is found in
 <filename>/usr/doc/en_US.ISO8859-1/books/handbook/</filename>.
 The main file is called <filename>book.xml</filename>.
 There is also a <filename>Makefile</filename> and a
 number of files with a <filename>.ent</filename> extension.</para>

<para><filename>kbd0</filename> is the first keyboard detected
 by the system, and appears in
 <filename>/dev</filename>.</para>
Appearance:
The source for the Handbook in English is found in
	 /usr/doc/en_US.ISO8859-1/books/handbook/.
	 The main file is called book.xml.
	 There is also a Makefile and a number
	 of files with a .ent extension.
kbd0 is the first keyboard detected
	 by the system, and appears in
	 /dev.

9.6.7. The Name of Ports
FreeBSD Extension:
These elements are part of the FreeBSD extension to
	 DocBook, and do not exist in the original DocBook
	 DTD.

To include the name of a program from the FreeBSD
	Ports Collection in the document, use the package
	tag. Since the Ports Collection can be installed in any
	number of locations, only include the category and the port
	name; do not include /usr/ports.
By default, package refers to a binary package.
	To refer to a port that will be built from source, set the
	role attribute to
	port.
Example 9.25. package Example
Usage:
<para>Install the <package>net/wireshark</package> binary
 package to view network traffic.</para>

<para><package role="port">net/wireshark</package> can also be
 built and installed from the Ports Collection.</para>
Appearance:
Install the net/wireshark binary
	 package to view network traffic.
net/wireshark can also be
	 built and installed from the Ports Collection.

9.6.8. Hosts, Domains, IP Addresses, User Names, Group Names,
	and Other System Items
FreeBSD Extension:
These elements are part of the FreeBSD extension to
	 DocBook, and do not exist in the original DocBook
	 DTD.

Information for “system items” is marked up
	with systemitem. The class
	attribute is used to identify the particular type of
	information shown.
	class="domainname"
	The text is a domain name, such as
	 FreeBSD.org or
	 ngo.org.uk. There is no hostname
	 component.

	class="etheraddress"
	The text is an Ethernet MAC
	 address, expressed as a series of 2 digit hexadecimal
	 numbers separated by colons.

	class="fqdomainname"
	The text is a Fully Qualified Domain Name, with
	 both hostname and domain name parts.

	class="ipaddress"
	The text is an IP address,
	 probably expressed as a dotted quad.

	class="netmask"
	The text is a network mask, which might be
	 expressed as a dotted quad, a hexadecimal string, or as
	 a / followed by a number
	 (CIDR notation).

	class="systemname"
	With class="systemname"
	 the marked up information is the simple hostname, such
	 as freefall or
	 wcarchive.

	class="username"
	The text is a username, like
	 root.

	class="groupname"
	The text is a groupname, like
	 wheel.

Example 9.26. systemitem and Classes Example
Usage:
<para>The local machine can always be referred to by the
 name <systemitem class="systemname">localhost</systemitem>, which will have the IP
 address <systemitem class="ipaddress">127.0.0.1</systemitem>.</para>

<para>The <systemitem class="domainname">FreeBSD.org</systemitem>
 domain contains a number of different hosts, including
 <systemitem class="fqdomainname">freefall.FreeBSD.org</systemitem> and
 <systemitem class="fqdomainname">bento.FreeBSD.org</systemitem>.</para>

<para>When adding an <acronym>IP</acronym> alias to an
 interface (using <command>ifconfig</command>)
 <emphasis>always</emphasis> use a netmask of
 <systemitem class="netmask">255.255.255.255</systemitem> (which can
 also be expressed as
 <systemitem class="netmask">0xffffffff</systemitem>).</para>

<para>The <acronym>MAC</acronym> address uniquely identifies
 every network card in existence. A typical
 <acronym>MAC</acronym> address looks like
 <systemitem class="etheraddress">08:00:20:87:ef:d0</systemitem>.</para>

<para>To carry out most system administration functions
 requires logging in as <systemitem class="username">root</systemitem>.</para>
Appearance:
The local machine can always be referred to by the name
	 localhost, which will have the IP
	 address
	 127.0.0.1.
The
	 FreeBSD.org
	 domain contains a number of different hosts, including
	 freefall.FreeBSD.org and
	 bento.FreeBSD.org.
When adding an IP alias to an
	 interface (using ifconfig)
	 always use a netmask of
	 255.255.255.255
	 (which can also be expressed as
	 0xffffffff).
The MAC address uniquely identifies
	 every network card in existence. A typical
	 MAC address looks like 08:00:20:87:ef:d0.
To carry out most system administration functions
	 requires logging in as
	 root.

9.6.9. Uniform Resource Identifiers
	(URIs)
Occasionally it is useful to show a
	Uniform Resource Identifier (URI) without
	making it an active hyperlink. The uri element
	makes this possible:
Example 9.27. uri Example
Usage:
<para>This URL shows only as text:
 <uri>https://www.FreeBSD.org</uri>. It does not
 create a link.</para>
Appearance:
This URL shows only as text:
	 https://www.FreeBSD.org. It does not
	 create a link.

To create links, see
	Section 9.8, “Links”.
9.6.10. Email Addresses
Email addresses are marked up as email
	elements. In the HTML output format, the
	wrapped text becomes a hyperlink to the email address. Other
	output formats that support hyperlinks may also make the email
	address into a link.
Example 9.28. email with a Hyperlink Example
Usage:
<para>An email address that does not actually exist, like
 <email>notreal@example.com</email>, can be used as an
 example.</para>
Appearance:
An email address that does not actually exist, like
	 <notreal@example.com>, can be used as an
	 example.

A FreeBSD-specific extension allows setting the
	role attribute to nolink
	to prevent the creation of the hyperlink to the email
	address.
Example 9.29. email Without a Hyperlink Example
Usage:
<para>Sometimes a link to an email address like
 <email role="nolink">notreal@example.com</email> is not
 desired.</para>
Appearance:
Sometimes a link to an email address like
	 <notreal@example.com> is not
	 desired.

9.6.11. Describing Makefiles
FreeBSD Extension:
These elements are part of the FreeBSD extension to
	 DocBook, and do not exist in the original DocBook
	 DTD.

Two elements exist to describe parts of
	Makefiles, buildtarget
	and varname.
buildtarget identifies a build target
	exported by a Makefile that can be
	given as a parameter to make.
	varname identifies a variable that can be
	set (in the environment, on the command line with
	make, or within the
	Makefile) to influence the
	process.
Example 9.30. buildtarget and
	 varname Example
Usage:
<para>Two common targets in a <filename>Makefile</filename>
 are <buildtarget>all</buildtarget> and
 <buildtarget>clean</buildtarget>.</para>

<para>Typically, invoking <buildtarget>all</buildtarget> will
 rebuild the application, and invoking
 <buildtarget>clean</buildtarget> will remove the temporary
 files (<filename>.o</filename> for example) created by the
 build process.</para>

<para><buildtarget>clean</buildtarget> may be controlled by a
 number of variables, including <varname>CLOBBER</varname>
 and <varname>RECURSE</varname>.</para>
Appearance:
Two common targets in a Makefile
	 are all and
	 clean.
Typically, invoking all will
	 rebuild the application, and invoking
	 clean will remove the temporary
	 files (.o for example) created by the
	 build process.
clean may be controlled by a
	 number of variables, including CLOBBER
	 and RECURSE.

9.6.12. Literal Text
Literal text, or text which should be entered verbatim, is
	often needed in documentation. This is text that is excerpted
	from another file, or which should be copied exactly as shown
	from the documentation into another file.
Some of the time, programlisting will
	be sufficient to denote this text. But
	programlisting is not always appropriate,
	particularly when you want to include a portion of a file
	“in-line” with the rest of the
	paragraph.
On these occasions, use
	literal.
Example 9.31. literal Example
Usage:
<para>The <literal>maxusers 10</literal> line in the kernel
 configuration file determines the size of many system tables, and is
 a rough guide to how many simultaneous logins the system will
 support.</para>
Appearance:
The maxusers 10 line in the kernel
	 configuration file determines the size of many system
	 tables, and is a rough guide to how many simultaneous
	 logins the system will support.

9.6.13. Showing Items That the User Must
	Fill In
There will often be times when the user is shown
	what to do, or referred to a file or command line, but
	cannot simply copy the example provided. Instead, they
	must supply some information themselves.
replaceable is designed for this
	eventuality. Use it inside other
	elements to indicate parts of that element's content that
	the user must replace.
Example 9.32. replaceable Example
Usage:
<screen>&prompt.user; <userinput>man <replaceable>command</replaceable></userinput></screen>
Appearance:
% man command

replaceable can be used in many
	 different elements, including literal.
	 This example also shows that replaceable
	 should only be wrapped around the content that the user
	 is meant to provide. The other content
	 should be left alone.
Usage:
<para>The <literal>maxusers <replaceable>n</replaceable></literal>
 line in the kernel configuration file determines the size of many system
 tables, and is a rough guide to how many simultaneous logins the system will
 support.</para>

<para>For a desktop workstation, <literal>32</literal> is a good value
 for <replaceable>n</replaceable>.</para>
Appearance:
The
	 maxusers n
	 line in the kernel configuration file determines the size
	 of many system tables, and is a rough guide to how many
	 simultaneous logins the system will support.
For a desktop workstation, 32 is a
	 good value for n.

9.6.14. Showing GUI Buttons
Buttons presented by a graphical user interface are marked
	with guibutton. To make the text look more
	like a graphical button, brackets and non-breaking spaces are
	added surrounding the text.
Example 9.33. guibutton Example
Usage:
<para>Edit the file, then click
 <guibutton>[Save]</guibutton> to save the
 changes.</para>
Appearance:
Edit the file, then click
	 [Save] to save the
	 changes.

9.6.15. Quoting System Errors
System errors generated by FreeBSD are marked with
	errorname. This indicates the exact error
	that appears.
Example 9.34. errorname Example
Usage:
<screen><errorname>Panic: cannot mount root</errorname></screen>
Appearance:
Panic: cannot mount root

9.7. Images
Important:
Image support in the documentation is somewhat
	experimental. The mechanisms described here are unlikely to
	change, but that is not guaranteed.
To provide conversion between different image formats, the
	graphics/ImageMagick
	port must be installed. This port is not included in the
	textproc/docproj meta
	port, and must be installed separately.
A good example of the use of images is the
	doc/en_US.ISO8859-1/articles/vm-design/
	document. Examine the files in that directory to see how
	these elements are used together. Build different output
	formats to see how the format determines what images are shown
	in the rendered document.

9.7.1. Image Formats
The following image formats are currently supported. An
	image file will automatically be converted to bitmap or vector
	image depending on the output document format.
These are the only formats in which
	images should be committed to the documentation
	repository.
	EPS (Encapsulated
	 Postscript)
	Images that are primarily vector based, such as
	 network diagrams, time lines, and similar, should be in
	 this format. These images have a
	 .eps extension.

	PNG (Portable Network
	 Graphic)
	For bitmaps, such as screen captures, use this
	 format. These images have the .png
	 extension.

	PIC (PIC graphics language)
	PIC is a language for drawing
	 simple vector-based figures used in the pic(1)
	 utility. These images have the
	 .pic extension.

	SCR (SCReen capture)
	This format is specific to screenshots of console
	 output. The following command generates an SCR file
	 shot.scr from video buffer of
	 /dev/ttyv0:
vidcontrol -p < /dev/ttyv0 > shot.scr
This is preferable to PNG format
	 for screenshots because the SCR file
	 contains plain text of the command lines so that it can
	 be converted to a PNG image or a
	 plain text depending on the output document
	 format.

Use the appropriate format for each image. Documentation
	will often have a mix of EPS and
	PNG images. The
	Makefiles ensure that the correct format
	image is chosen depending on the output format used.
	Do not commit the same image to the repository in
	 two different formats.
Important:
The Documentation Project may eventually switch to using
	 the SVG (Scalable Vector Graphic) format
	 for vector images. However, the current state of
	 SVG capable editing tools makes this
	 impractical.

9.7.2. Image File Locations
Image files can be stored in one of several locations,
	depending on the document and image:
	In the same directory as the document itself, usually
	 done for articles and small books that keep all their
	 files in a single directory.

	In a subdirectory of the main document. Typically
	 done when a large book uses separate subdirectories to
	 organize individual chapters.
When images are stored in a subdirectory of the
	 main document directory, the subdirectory name must be
	 included in their paths in the
	 Makefile and the
	 imagedata element.

	In a subdirectory of
	 doc/share/images named after the
	 document. For example, images for the Handbook are stored
	 in doc/share/images/books/handbook.
	 Images that work for multiple translations are stored in
	 this upper level of the documentation file tree.
	 Generally, these are images that can be used unchanged in
	 non-English translations of the document.

9.7.3. Image Markup
Images are included as part of a mediaobject.
	The mediaobject can contain other, more specific
	objects. We are concerned with two, the
	imageobject and the textobject.
Include one imageobject, and two
	textobject elements. The imageobject
	will point to the name of the image file without the
	extension. The textobject elements contain
	information that will be presented to the user as well as, or
	instead of, the image itself.
Text elements are shown to the reader in several
	situations. When the document is viewed in
	HTML, text elements are shown while the
	image is loading, or if the mouse pointer is hovered over the
	image, or if a text-only browser is being used. In formats
	like plain text where graphics are not possible, the text
	elements are shown instead of the graphical ones.
This example shows how to include an image called
	fig1.png in a document. The image is a
	rectangle with an A inside it:
<mediaobject>
 <imageobject>
 <imagedata fileref="fig1"/> [image: 1]
 </imageobject>

 <textobject>
 <literallayout class="monospaced">+---------------+ [image: 2]
| A |
+---------------+</literallayout>
 </textobject>

 <textobject>
 <phrase>A picture</phrase> [image: 3]
 </textobject>
</mediaobject>
	[image: 1]
	Include an imagedata element
	 inside the imageobject element. The
	 fileref attribute should contain the
	 filename of the image to include, without the extension.
	 The stylesheets will work out which extension should be
	 added to the filename automatically.

	[image: 2]
	The first textobject contains a
	 literallayout element, where the
	 class attribute is set to
	 monospaced. This is an opportunity to
	 demonstrate ASCII art skills. This
	 content will be used if the document is converted to plain
	 text.
Notice how the first and last lines of the content
	 of the literallayout element butt up
	 next to the element's tags. This ensures no extraneous
	 white space is included.

	[image: 3]
	The second textobject contains a
	 single phrase element. The contents of
	 this phrase will become the alt
	 attribute for the image when this document is converted to
	 HTML.

9.7.4. Image Makefile Entries
Images must be listed in the Makefile
	in the IMAGES variable. This variable must
	contain the names of all the source
	images. For example, if there are three figures,
	fig1.eps, fig2.png,
	fig3.png, then the
	Makefile should have lines like this in
	it.
…
IMAGES= fig1.eps fig2.png fig3.png
…
or
…
IMAGES= fig1.eps
IMAGES+= fig2.png
IMAGES+= fig3.png
…
Again, the Makefile will work out the
	complete list of images it needs to build the source document,
	you only need to list the image files you
	provided.
9.7.5. Images and Chapters in Subdirectories
Be careful when separating documentation into smaller
	files in different directories (see Section 7.7.1, “Using General Entities to Include Files”).
Suppose there is a book with three chapters, and the
	chapters are stored in their own directories, called
	chapter1/chapter.xml,
	chapter2/chapter.xml, and
	chapter3/chapter.xml. If each chapter
	has images associated with it, place those images in each
	chapter's subdirectory (chapter1/,
	chapter2/, and
	chapter3/).
However, doing this requires including the directory
	names in the IMAGES variable in the
	Makefile, and
	including the directory name in the imagedata
	element in the document.
For example, if the book has
	chapter1/fig1.png, then
	chapter1/chapter.xml should
	contain:
<mediaobject>
 <imageobject>
 <imagedata fileref="chapter1/fig1"/> [image: 1]
 </imageobject>

 …

</mediaobject>
	[image: 1]
	The directory name must be included in the
	 fileref attribute.

The Makefile must contain:
…
IMAGES= chapter1/fig1.png
…
9.8. Links
Note:
Links are also in-line elements. To show a
	URI without creating a link, see
	Section 9.6.9, “Uniform Resource Identifiers
	(URIs)”.

9.8.1. xml:id Attributes
Most DocBook elements accept an xml:id
	attribute to give that part of the document a unique name.
	The xml:id can be used as a target for a
	crossreference or link.
Any portion of the document that will be a link target
	must have an xml:id attribute. Assigning
	an xml:id to all chapters and sections,
	even if there are no current plans to link to them, is a good
	idea. These xml:ids can be used as unique
	reference points by anyone referring to the
	HTML version of the document.
Example 9.35. xml:id on Chapters and
	 Sections Example
<chapter xml:id="introduction">
 <title>Introduction</title>

 <para>This is the introduction. It contains a subsection,
 which is identified as well.</para>

 <sect1 xml:id="introduction-moredetails">
 <title>More Details</title>

 <para>This is a subsection.</para>
 </sect1>
</chapter>

Use descriptive values for xml:id
	names. The values must be unique within the entire document,
	not just in a single file. In the example, the subsection
	xml:id is constructed by appending text to
	the chapter xml:id. This ensures that the
	xml:ids are unique. It also helps both
	reader and anyone editing the document to see where the link
	is located within the document, similar to a directory path to
	a file.
9.8.2. Crossreferences with xref
xref provides the reader with a link to jump to
	another section of the document. The target
	xml:id is specified in the
	linkend attribute, and xref
	generates the link text automatically.
Example 9.36. xref Example
Assume that this fragment appears somewhere in a
	 document that includes the xml:id
	 example shown above:
<para>More information can be found
 in <xref linkend="introduction"/>.</para>

<para>More specific information can be found
 in <xref linkend="introduction-moredetails"/>.</para>
The link text will be generated automatically, looking
	 like (emphasized text indicates the
	 link text):
More information can be found in Chapter
	 1, Introduction.
More specific information can be found in
	 Section 1.1,
	 “More Details”.

The link text is generated automatically from the chapter
	and section number and title
	elements.
9.8.3. Linking to Other Documents on the
	Web
The link element described here allows the writer to
	define the link text. When link text is used, it is very important to be descriptive
	to give the reader an idea of where the link goes.
	Remember that DocBook can be rendered to multiple
	types of media. The reader might be looking at a printed book
	or other form of media where there are no links. If the link
	text is not descriptive enough, the reader might not be able to
	locate the linked section.
The xlink:href attribute
	 is the URL of the page,
	 and the content of the element is the text that
	 will be displayed for the user to activate.
In many situations, it is preferable to show the actual
	URL rather than text. This can be done by
	leaving out the element text entirely.
Example 9.37. link to a FreeBSD Documentation Web
	 Page Example
Link to the book or article URL
	 entity. To link to a specific chapter in a book, add a
	 slash and the chapter file name, followed by an optional
	 anchor within the chapter. For articles, link to the
	 article URL entity, followed by an
	 optional anchor within the article.
	 URL entities can be found in
	 doc/share/xml/urls.ent.
Usage for FreeBSD book links:
<para>Read the <link
 xlink:href="&url.books.handbook;/svn.html#svn-intro">SVN
 introduction</link>, then pick the nearest mirror from
 the list of <link
 xlink:href="&url.books.handbook;/svn.html#svn-mirrors">Subversion
 mirror sites</link>.</para>
Appearance:
Read the SVN
	 introduction, then pick the nearest mirror from
	 the list of Subversion
	 mirror sites.
Usage for FreeBSD article links:
<para>Read this
 <link xlink:href="&url.articles.bsdl-gpl;">article
 about the BSD license</link>, or just the
 <link xlink:href="&url.articles.bsdl-gpl;#intro">introduction</link>.</para>
Appearance:
Read this
	 article
	 about the BSD license, or just the introduction.

Example 9.38. link to a FreeBSD Web Page Example
Usage:
<para>Of course, you could stop reading this document and go to the
 <link xlink:href="&url.base;/index.html">FreeBSD home page</link> instead.</para>
Appearance:
Of course, you could stop reading this document and go
	 to the FreeBSD
	 home page instead.

Example 9.39. link to an External Web
	 Page Example
Usage:
<para>Wikipedia has an excellent reference on
 <link
 xlink:href="http://en.wikipedia.org/wiki/GUID_Partition_Table">GUID
 Partition Tables</link>.</para>
Appearance:
Wikipedia has an excellent reference on GUID
	 Partition Tables.
The link text can be omitted to show the actual
	 URL:
<para>Wikipedia has an excellent reference on
 GUID Partition Tables: <link
 xlink:href="http://en.wikipedia.org/wiki/GUID_Partition_Table"></link>.</para>
The same link can be entered using shorter
	 notation instead of a separate ending tag:
<para>Wikipedia has an excellent reference on
 GUID Partition Tables: <link
 xlink:href="http://en.wikipedia.org/wiki/GUID_Partition_Table"/>.</para>
The two methods are equivalent. Appearance:
Wikipedia has an excellent reference on GUID Partition
	 Tables: http://en.wikipedia.org/wiki/GUID_Partition_Table.

Chapter 10. Style Sheets
XML is concerned with content, and says
 nothing about how that content should be presented to the reader
 or rendered on paper. Multiple style sheet
 languages have been developed to describe visual layout, including
 Extensible Stylesheet Language Transformation
 (XSLT), Document Style Semantics and
 Specification Language (DSSSL), and Cascading
 Style Sheets (CSS).
The FDP documents use
 XSLT stylesheets to transform DocBook into
 XHTML, and then CSS
 formatting is applied to the XHTML pages.
 Printable output is currently rendered with legacy
 DSSSL stylesheets, but this will probably
 change in the future.
10.1. CSS
Cascading Style Sheets (CSS) are a
 mechanism for attaching style information (font, weight, size,
 color, and so forth) to elements in an XHTML
 document without abusing XHTML to do
 so.
10.1.1. The DocBook Documents
The FreeBSD XSLT and
	DSSSL stylesheets refer to
	docbook.css, which is expected to be
	present in the same directory as the XHTML
	files. The project-wide CSS file is copied
	from doc/share/misc/docbook.css when
	documents are converted to XHTML, and is
	installed automatically.
Chapter 11. Translations
This is the FAQ for people translating the FreeBSD
 documentation (FAQ, Handbook, tutorials, manual pages, and others)
 to different languages.
It is very heavily based on the
 translation FAQ from the FreeBSD German Documentation Project,
 originally written by Frank Gründer
 <elwood@mc5sys.in-berlin.de> and translated back to
 English by Bernd Warken <bwarken@mayn.de>.
The FAQ is maintained by the Documentation Engineering Team <doceng@FreeBSD.org>.
	11.1.
	What do i18n and l10n
	 mean?

		i18n means
	 internationalization and
	 l10n means localization.
	 They are just a convenient shorthand.
i18n can be read as “i”
	 followed by 18 letters, followed by “n”.
	 Similarly, l10n is “l”
	 followed by 10 letters, followed by “n”.

	11.2.
	Is there a mailing list for translators?

		Yes. Different translation groups have their own
	 mailing lists. The list
	 of translation projects has more information about
	 the mailing lists and web sites run by each translation
	 project. In addition there is
	 <freebsd-translators@freebsd.org> for general
	 translation discussion.

	11.3.
	Are more translators needed?

		Yes. The more people work on translation the faster it
	 gets done, and the faster changes to the English
	 documentation are mirrored in the translated
	 documents.
You do not have to be a professional translator to be
	 able to help.

	11.4.
	What languages do I need to know?

		Ideally, you will have a good knowledge of written
	 English, and obviously you will need to be fluent in the
	 language you are translating to.
English is not strictly necessary. For example, you
	 could do a Hungarian translation of the FAQ from the Spanish
	 translation.

	11.5.
	What software do I need to know?

		It is strongly recommended that you maintain a local
	 copy of the FreeBSD Subversion repository (at least the
	 documentation part). This can be done by running:
% svn checkout https://svn.FreeBSD.org/doc/head/ head
svn.FreeBSD.org
	is a public SVN server.
	Verify the server
	certificate from the list of Subversion
	mirror sites.
Note:
This will require the devel/subversion package to
	 be installed.

You should be comfortable using
	 svn. This will allow you to see
	 what has changed between different versions of the files
	 that make up the documentation.
For example, to view the differences between revisions
	 r33733 and r33734 of
	 en_US.ISO8859-1/books/fdp-primer/book.xml,
	 run:
% svn diff -r33733:33734 en_US.ISO8859-1/books/fdp-primer/book.xml

	11.6.
	How do I find out who else might be translating to the
	 same language?

		The Documentation
	 Project translations page lists the translation
	 efforts that are currently known about. If others are
	 already working on translating documentation to your
	 language, please do not duplicate their efforts. Instead,
	 contact them to see how you can help.
If no one is listed on that page as translating for your
	 language, then send a message to the FreeBSD documentation project mailing list in case someone
	 else is thinking of doing a translation, but has not
	 announced it yet.

	11.7.
	No one else is translating to my language. What do I
	 do?

		Congratulations, you have just started the
	 “FreeBSD your-language-here
	 Documentation Translation Project”. Welcome
	 aboard.
First, decide whether or not you have got the time to
	 spare. Since you are the only person working on your
	 language at the moment it is going to be your responsibility
	 to publicize your work and coordinate any volunteers that
	 might want to help you.
Write an email to the Documentation Project mailing
	 list, announcing that you are going to translate the
	 documentation, so the Documentation Project translations
	 page can be maintained.
If there is already someone in your country providing
	 FreeBSD mirroring services you should contact them and ask
	 if you can have some webspace for your project, and possibly
	 an email address or mailing list services.
Then pick a document and start translating. It is best
	 to start with something fairly small—either the FAQ,
	 or one of the tutorials.

	11.8.
	I have translated some documentation, where do I send
	 it?

		That depends. If you are already working with a
	 translation team (such as the Japanese team, or the German
	 team) then they will have their own procedures for handling
	 submitted documentation, and these will be outlined on their
	 web pages.
If you are the only person working on a particular
	 language (or you are responsible for a translation project
	 and want to submit your changes back to the FreeBSD project)
	 then you should send your translation to the FreeBSD project
	 (see the next question).

	11.9.
	I am the only person working on translating to this
	 language, how do I submit my translation?
or
We are a translation team, and want to submit
	 documentation that our members have translated for
	 us.

		First, make sure your translation is organized properly.
	 This means that it should drop into the existing
	 documentation tree and build straight away.
Currently, the FreeBSD documentation is stored in a top
	 level directory called head/.
	 Directories below this are named according to the language
	 code they are written in, as defined in ISO639
	 (/usr/share/misc/iso639 on a version of
	 FreeBSD newer than 20th January 1999).
If your language can be encoded in different ways (for
	 example, Chinese) then there should be directories below
	 this, one for each encoding format you have provided.
Finally, you should have directories for each
	 document.
For example, a hypothetical Swedish translation might
	 look like:
head/
 sv_SE.ISO8859-1/
 Makefile
 htdocs/
 docproj/
 books/
 faq/
 Makefile
 book.xml
sv_SE.ISO8859-1 is the name of the
	 translation, in
	 lang.encoding
	 form. Note the two Makefiles, which will be used to build
	 the documentation.
Use tar(1) and gzip(1) to compress up your
	 documentation, and send it to the project.
% cd doc
% tar cf swedish-docs.tar sv_SE.ISO8859-1
% gzip -9 swedish-docs.tar
Put swedish-docs.tar.gz somewhere.
	 If you do not have access to your own webspace (perhaps your
	 ISP does not let you have any) then you can email
	 Documentation Engineering Team <doceng@FreeBSD.org>, and arrange to email the files when it is
	 convenient.
Either way, you should use Bugzilla to submit a
	 report indicating that you have submitted the documentation.
	 It would be very helpful if you could get other people to
	 look over your translation and double check it first, since
	 it is unlikely that the person committing it will be fluent
	 in the language.
Someone (probably the Documentation Project Manager,
	 currently Documentation Engineering Team <doceng@FreeBSD.org>) will then take your translation and
	 confirm that it builds. In particular, the following things
	 will be looked at:
	Do all your files use RCS strings (such as
	 "ID")?

	Does make all in the
	 sv_SE.ISO8859-1 directory work
	 correctly?

	Does make install work
	 correctly?

If there are any problems then whoever is looking at the
	 submission will get back to you to work them out.
If there are no problems your translation will be
	 committed as soon as possible.

	11.10.
	Can I include language or country specific text in my
	 translation?

		We would prefer that you did not.
For example, suppose that you are translating the
	 Handbook to Korean, and want to include a section about
	 retailers in Korea in your Handbook.
There is no real reason why that information should not
	 be in the English (or German, or Spanish, or Japanese, or
	 …) versions as well. It is feasible that an English
	 speaker in Korea might try to pick up a copy of FreeBSD
	 whilst over there. It also helps increase FreeBSD's
	 perceived presence around the globe, which is not a bad
	 thing.
If you have country specific information, please submit
	 it as a change to the English Handbook (using
	 Bugzilla) and then translate the change back to your
	 language in the translated Handbook.
Thanks.

	11.11.
	How should language specific characters be
	 included?

		Non-ASCII characters in the documentation should be
	 included using SGML entities.
Briefly, these look like an ampersand (&), the name
	 of the entity, and a semi-colon (;).
The entity names are defined in ISO8879, which is in the
	 ports tree as textproc/iso8879.
A few examples include:
Entity: é
Appearance: é
Description: Small “e” with an acute accent

Entity: É
Appearance: É
Description: Large “E” with an acute accent

Entity: ü
Appearance: ü
Description: Small “u” with an umlaut

After you have installed the iso8879 port, the files in
	 /usr/local/share/xml/iso8879 contain
	 the complete list.

	11.12.
	Addressing the reader

		In the English documents, the reader is addressed as
	 “you”, there is no formal/informal distinction
	 as there is in some languages.
If you are translating to a language which does
	 distinguish, use whichever form is typically used in other
	 technical documentation in your language. If in doubt, use
	 a mildly polite form.

	11.13.
	Do I need to include any additional information in my
	 translations?

		Yes.
The header of the English version of each document will
	 look something like this:
<!--
 The FreeBSD Documentation Project

 $FreeBSD: head/en_US.ISO8859-1/books/faq/book.xml 38674 2012-04-14 13:52:52Z $
-->
The exact boilerplate may change, but it will always
	 include a $FreeBSD$ line and the phrase
	 The FreeBSD Documentation Project.
	 Note that the $FreeBSD part is expanded automatically
	 by Subversion, so it should be empty (just
	 $FreeBSD$) for new
	 files.
Your translated documents should include their own
	 $FreeBSD$ line, and change the
	 FreeBSD Documentation Project line to
	 The FreeBSD language
	 Documentation Project.
In addition, you should add a third line which indicates
	 which revision of the English text this is based on.
So, the Spanish version of this file might start:
<!--
 The FreeBSD Spanish Documentation Project

 $FreeBSD: head/es_ES.ISO8859-1/books/faq/book.xml 38826 2012-05-17 19:12:14Z hrs $
 Original revision: r38674
-->

Chapter 12. PO Translations
12.1. Introduction
The GNU
	gettext system offers
 translators an easy way to create and maintain translations of
 documents. Translatable strings are extracted from the original
 document into a PO (Portable Object) file.
 Translated versions of the strings are entered with a separate
 editor. The strings can be used directly or built into a
 complete translated version of the original document.
12.2. Quick Start
The procedure shown in
 Section 1.1, “Quick Start” is assumed to have
 already been performed, but the TRANSLATOR
 option must be enabled in the
 textproc/docproj port. If that
 option was not enabled, display the options menu and enable
 it, then reinstall the port:
cd /usr/ports/textproc/docproj
make config
make clean deinstall install clean
This example shows the creation of a Spanish translation of
 the short Leap
	Seconds article.
Procedure 12.1. Install a PO Editor
	A PO editor is needed to edit
	 translation files. This example uses
	 editors/poedit.
cd /usr/ports/editors/poedit
make install clean

Procedure 12.2. Initial Setup
When a new translation is first created, the directory
	structure and Makefile must be created or
	copied from the English original:
	Create a directory for the new translation. The
	 English article source is in
	 ~/doc/en_US.ISO8859-1/articles/leap-seconds/.
	 The Spanish translation will go in
	 ~/doc/es_ES.ISO8859-1/articles/leap-seconds/.
	 The path is the same except for the name of the language
	 directory.
% svn mkdir --parents ~/doc/es_ES.ISO8859-1/articles/leap-seconds/

	Copy the Makefile from the original
	 document into the translation directory:
% svn cp ~/doc/en_US.ISO8859-1/articles/leap-seconds/Makefile \
 ~/doc/es_ES.ISO8859-1/articles/leap-seconds/

Procedure 12.3. Translation
Translating a document consists of two steps: extracting
	translatable strings from the original document, and entering
	translations for those strings. These steps are repeated
	until the translator feels that enough of the document has
	been translated to produce a usable translated
	document.
	Extract the translatable strings from the original
	 English version into a PO file:
% cd ~/doc/es_ES.ISO8859-1/articles/leap-seconds/
% make po

	Use a PO editor to enter translations
	 in the PO file. There are several
	 different editors available. poedit
	 from editors/poedit is shown
	 here.
The PO file name is the
	 two-character language code followed by an underline and a
	 two-character region code. For Spanish, the file name is
	 es_ES.po.
% poedit es_ES.po

Procedure 12.4. Generating a Translated Document
	Generate the translated document:
% cd ~/doc/es_ES.ISO8859-1/articles/leap-seconds/
% make tran
The name of the generated document matches the name
	 of the English original, usually
	 article.xml for articles or
	 book.xml for books.

	Check the generated file by rendering it to
	 HTML and viewing it with a
	 web browser:
% make FORMATS=html
% firefox article.html

12.3. Creating New Translations
The first step to creating a new translated document is
 locating or creating a directory to hold it. FreeBSD puts
 translated documents in a subdirectory named for their
 language and region in the format
 lang_REGION.
 lang is a two-character lowercase
 code. It is followed by an underscore character and then the
 two-character uppercase REGION
 code.
Table 12.1. Language Names
	Language	Region	Translated Directory Name	PO File Name	Character Set
	English	United States	en_US.ISO8859-1	en_US.po	ISO 8859-1
	Bengali	Bangladesh	bn_BD.UTF-8	bn_BD.po	UTF-8
	Danish	Denmark	da_DK.ISO8859-1	da_DK.po	ISO 8859-1
	German	Germany	de_DE.ISO8859-1	de_DE.po	ISO 8859-1
	Greek	Greece	el_GR.ISO8859-7	el_GR.po	ISO 8859-7
	Spanish	Spain	es_ES.ISO8859-1	es_ES.po	ISO 8859-1
	French	France	fr_FR.ISO8859-1	fr_FR.po	ISO 8859-1
	Hungarian	Hungary	hu_HU.ISO8859-2	hu_HU.po	ISO 8859-2
	Italian	Italy	it_IT.ISO8859-15	it_IT.po	ISO 8859-15
	Japanese	Japan	ja_JP.eucJP	ja_JP.po	EUC JP
	Korean	Korea	ko_KR.UTF-8	ko_KR.po	UTF-8
	Mongolian	Mongolia	mn_MN.UTF-8	mn_MN.po	UTF-8
	Dutch	Netherlands	nl_NL.ISO8859-1	nl_NL.po	ISO 8859-1
	Norwegian	Norway	no_NO.ISO8859-1	no_NO.po	ISO 8859-1
	Polish	Poland	pl_PL.ISO8859-2	pl_PL.po	ISO 8859-2
	Portuguese	Brazil	pt_BR.ISO8859-1	pt_BR.po	ISO 8859-1
	Russian	Russia	ru_RU.KOI8-R	ru_RU.po	KOI8-R
	Serbian	Serbia	sr_YU.ISO8859-2	sr_YU.po	ISO 8859-2
	Turkish	Turkey	tr_TR.ISO8859-9	tr_TR.po	ISO 8859-9
	Chinese	China	zh_CN.UTF-8	zh_CN.po	UTF-8
	Chinese	Taiwan	zh_TW.UTF-8	zh_TW.po	UTF-8

The translations are in subdirectories of the main
 documentation directory, here assumed to be
 ~/doc/ as shown in
 Section 1.1, “Quick Start”. For example, German
 translations are located in
 ~/doc/de_DE.ISO8859-1/, and French
 translations are in
 ~/doc/fr_FR.ISO8859-1/.
Each language directory contains separate subdirectories
 named for the type of documents, usually
 articles/ and
 books/.
Combining these directory names gives the complete path to
 an article or book. For example, the French translation of the
 NanoBSD article is in
 ~/doc/fr_FR.ISO8859-1/articles/nanobsd/,
 and the Mongolian translation of the Handbook is in
 ~/doc/mn_MN.UTF-8/books/handbook/.
A new language directory must be created when translating
 a document to a new language. If the language directory already
 exists, only a subdirectory in the
 articles/ or books/
 directory is needed.
FreeBSD documentation builds are controlled by a
 Makefile in the same directory. With
 simple articles, the Makefile can often
 just be copied verbatim from the original English directory.
 The translation process combines multiple separate
 book.xml and
 chapter.xml files in books into a single
 file, so the Makefile for book translations
 must be copied and modified.
Example 12.1. Creating a Spanish Translation of the Porter's
	Handbook
Create a new Spanish translation of the
	Porter's
	 Handbook. The original is a book in
	~/doc/en_US.ISO8859-1/books/porters-handbook/.
	The Spanish language books directory
	 ~/doc/es_ES.ISO8859-1/books/ already
	 exists, so only a new subdirectory for the Porter's
	 Handbook is needed:
% cd ~/doc/es_ES.ISO8859-1/books/
% svn mkdir porters-handbook
A porters-handbook

	Copy the Makefile from the
	 original book:
% cd ~/doc/es_ES.ISO8859-1/books/porters-handbook
% svn cp ~/doc/en_US.ISO8859-1/books/porters-handbook/Makefile .
A Makefile
Modify the contents of the
	 Makefile to only expect a single
	 book.xml:
#
$FreeBSD$
#
Build the FreeBSD Porter's Handbook.
#

MAINTAINER=doc@FreeBSD.org

DOC?= book

FORMATS?= html-split

INSTALL_COMPRESSED?= gz
INSTALL_ONLY_COMPRESSED?=

XML content
SRCS= book.xml

Images from the cross-document image library
IMAGES_LIB+= callouts/1.png
IMAGES_LIB+= callouts/2.png
IMAGES_LIB+= callouts/3.png
IMAGES_LIB+= callouts/4.png
IMAGES_LIB+= callouts/5.png
IMAGES_LIB+= callouts/6.png
IMAGES_LIB+= callouts/7.png
IMAGES_LIB+= callouts/8.png
IMAGES_LIB+= callouts/9.png
IMAGES_LIB+= callouts/10.png
IMAGES_LIB+= callouts/11.png
IMAGES_LIB+= callouts/12.png
IMAGES_LIB+= callouts/13.png
IMAGES_LIB+= callouts/14.png
IMAGES_LIB+= callouts/15.png
IMAGES_LIB+= callouts/16.png
IMAGES_LIB+= callouts/17.png
IMAGES_LIB+= callouts/18.png
IMAGES_LIB+= callouts/19.png
IMAGES_LIB+= callouts/20.png
IMAGES_LIB+= callouts/21.png

URL_RELPREFIX?= ../../../..
DOC_PREFIX?= ${.CURDIR}/../../..

.include "${DOC_PREFIX}/share/mk/doc.project.mk"
Now the document structure is ready for the translator
	 to begin translating with
	 make po.

Example 12.2. Creating a French Translation of the
	PGP Keys Article
Create a new French translation of the
	PGP
	 Keys article. The original is an article in
	~/doc/en_US.ISO8859-1/articles/pgpkeys/.
	The French language article directory
	 ~/doc/fr_FR.ISO8859-1/articles/
	 already exists, so only a new subdirectory for the
	 PGP Keys article is needed:
% cd ~/doc/fr_FR.ISO8859-1/articles/
% svn mkdir pgpkeys
A pgpkeys

	Copy the Makefile from the
	 original article:
% cd ~/doc/fr_FR.ISO8859-1/articles/pgpkeys
% svn cp ~/doc/en_US.ISO8859-1/articles/pgpkeys/Makefile .
A Makefile
Check the contents of the
	 Makefile. Because this is a simple
	 article, in this case the Makefile
	 can be used unchanged. The $FreeBSD...$
	 version string on the second line will be replaced by the
	 version control system when this file is committed.
#
$FreeBSD$
#
Article: PGP Keys

DOC?= article

FORMATS?= html
WITH_ARTICLE_TOC?= YES

INSTALL_COMPRESSED?= gz
INSTALL_ONLY_COMPRESSED?=

SRCS= article.xml

To build with just key fingerprints, set FINGERPRINTS_ONLY.

URL_RELPREFIX?= ../../../..
DOC_PREFIX?= ${.CURDIR}/../../..

.include "${DOC_PREFIX}/share/mk/doc.project.mk"
With the document structure complete, the
	 PO file can be created with
	 make po.

12.4. Translating
The gettext system greatly
 reduces the number of things that must be tracked by a
 translator. Strings to be translated are extracted from the
 original document into a PO file. Then a
 PO editor is used to enter the translated
 versions of each string.
The FreeBSD PO translation system does not
 overwrite PO files, so the extraction step
 can be run at any time to update the PO
 file.
A PO editor is used to edit the file.
 editors/poedit is shown in
 these examples because it is simple and has minimal
 requirements. Other PO editors offer
 features to make the job of translating easier. The Ports
 Collection offers several of these editors, including
 devel/gtranslator.
It is important to preserve the PO file.
 It contains all of the work that translators have done.
Example 12.3. Translating the Porter's Handbook to Spanish
Enter Spanish translations of the contents of the Porter's
	Handbook.
	Change to the Spanish Porter's Handbook directory and
	 update the PO file. The generated
	 PO file is called
	 es_ES.po as shown in
	 Table 12.1, “Language Names”.
% cd ~/doc/es_ES.ISO8859-1/books/porters-handbook
% make po

	Enter translations using a PO
	 editor:
% poedit es_ES.po

12.5. Tips for Translators
12.5.1. Preserving XML Tags
Preserve XML tags that are shown in
	the English original.
Example 12.4. Preserving XML Tags
English original:
If <acronym>NTP</acronym> is not being used
Spanish translation:
Si <acronym>NTP</acronym> no se utiliza

12.5.2. Preserving Spaces
Preserve existing spaces at the beginning and end of
	strings to be translated. The translated version must have
	these spaces also.
12.5.3. Verbatim Tags
The contents of some tags should be copied verbatim, not
	translated:
	<citerefentry>

	<command>

	<filename>

	<literal>

	<manvolnum>

	<orgname>

	<package>

	<programlisting>

	<prompt>

	<refentrytitle>

	<screen>

	<userinput>

	<varname>

12.5.4. $FreeBSD$
	Strings
The $FreeBSD$ version strings used in
	files require special handling. In examples like
	Example 12.1, “Creating a Spanish Translation of the Porter's
	Handbook”, these
	strings are not meant to be expanded. The English documents
	use $ entities to avoid
	including actual literal dollar signs in the file:
$FreeBSD$
The $ entities are not seen
	as dollar signs by the version control system and so the
	string is not expanded into a version string.
When a PO file is created, the
	$ entities used in examples are
	replaced with actual dollar signs. The resulting literal
	$FreeBSD$ string will be
	wrongly expanded by the version control system when the file
	is committed.
The same technique as used in the English documents can be
	used in the translation. The $
	is used to replace the dollar sign in the translation entered
	into the PO editor:
$FreeBSD$
12.6. Building a Translated Document
A translated version of the original document can be created
 at any time. Any untranslated portions of the original will be
 included in English in the resulting document. Most
 PO editors have an indicator that shows how
 much of the translation has been completed. This makes it easy
 for the translator to see when enough strings have been
 translated to make building the final document
 worthwhile.
Example 12.5. Building the Spanish Porter's Handbook
Build and preview the Spanish version of the Porter's
	Handbook that was created in an earlier example.
	Build the translated document. Because the original
	 is a book, the generated document is
	 book.xml.
% cd ~/doc/es_ES.ISO8859-1/books/porters-handbook
% make tran

	Render the translated book.xml to
	 HTML and view it with
	 Firefox. This is the
	 same procedure used with the English version of the
	 documents, and other FORMATS can
	 be used here in the same way. See Table 5.1, “Common Output Formats”.
% make FORMATS=html
% firefox book.html

12.7. Submitting the New Translation
Prepare the new translation files for submission. This
 includes adding the files to the version control system, setting
 additional properties on them, then creating a diff for
 submission.
The diff files created by these examples can be attached to
 a documentation
	bug report or code
	review.
Example 12.6. Spanish Translation of the NanoBSD Article
	Add a FreeBSD version string comment as the first
	 line of the PO file:
#$FreeBSD$

	Add the Makefile, the
	 PO file, and the generated
	 XML translation to
	 version control:
% cd ~/doc/es_ES.ISO8859-1/articles/nanobsd/
% ls
Makefile	article.xml	es_ES.po
% svn add Makefile article.xml es_ES.po
A Makefile
A article.xml
A es_ES.po

	Set the
	 Subversion
	 svn:keywords properties on these files
	 to FreeBSD=%H so
	 $FreeBSD$ strings are
	 expanded into the path, revision, date, and author when
	 committed:
% svn propset svn:keywords FreeBSD=%H Makefile article.xml es_ES.po
property 'svn:keywords' set on 'Makefile'
property 'svn:keywords' set on 'article.xml'
property 'svn:keywords' set on 'es_ES.po'

	Set the MIME types of the files.
	 These are text/xml for books and
	 articles, and
	 text/x-gettext-translation for the
	 PO file.
% svn propset svn:mime-type text/x-gettext-translation es_ES.po
property 'svn:mime-type' set on 'es_ES.po'
% svn propset svn:mime-type text/xml article.xml
property 'svn:mime-type' set on 'article.xml'

	Create a diff of the new files from the
	 ~/doc/ base directory so the full
	 path is shown with the filenames. This helps committers
	 identify the target language directory.
% cd ~/doc
svn diff es_ES.ISO8859-1/articles/nanobsd/ > /tmp/es_nanobsd.diff

Example 12.7. Korean UTF-8 Translation of the
	Explaining-BSD Article
	Add a FreeBSD version string comment as the first
	 line of the PO file:
#$FreeBSD$

	Add the Makefile, the
	 PO file, and the generated
	 XML translation to
	 version control:
% cd ~/doc/ko_KR.UTF-8/articles/explaining-bsd/
% ls
Makefile	article.xml	ko_KR.po
% svn add Makefile article.xml ko_KR.po
A Makefile
A article.xml
A ko_KR.po

	Set the Subversion
	 svn:keywords properties on these files
	 to FreeBSD=%H so
	 $FreeBSD$ strings are
	 expanded into the path, revision, date, and author when
	 committed:
% svn propset svn:keywords FreeBSD=%H Makefile article.xml ko_KR.po
property 'svn:keywords' set on 'Makefile'
property 'svn:keywords' set on 'article.xml'
property 'svn:keywords' set on 'ko_KR.po'

	Set the MIME types of the files.
	 Because these files use the UTF-8
	 character set, that is also specified. To prevent the
	 version control system from mistaking these files for
	 binary data, the fbsd:notbinary
	 property is also set:
% svn propset svn:mime-type 'text/x-gettext-translation; charset=UTF-8' ko_KR.po
property 'svn:mime-type' set on 'ko_KR.po'
% svn propset fbsd:notbinary yes ko_KR.po
property 'fbsd:notbinary' set on 'ko_KR.po'
% svn propset svn:mime-type 'text/xml; charset=UTF-8' article.xml
property 'svn:mime-type' set on 'article.xml'
% svn propset fbsd:notbinary yes article.xml
property 'fbsd:notbinary' set on 'article.xml'

	Create a diff of these new files from the
	 ~/doc/ base directory:
% cd ~/doc
svn diff ko_KR.UTF-8/articles/explaining-bsd > /tmp/ko-explaining.diff

Chapter 13. Manual Pages
13.1. Introduction
Manual pages, commonly shortened to
 man pages, were conceived as
 readily-available reminders for command syntax, device driver
 details, or configuration file formats. They have become an
 extremely valuable quick-reference from the command line for
 users, system administrators, and programmers.
Although intended as reference material rather than
 tutorials, the EXAMPLES sections of manual pages often
 provide detailed use case.
Manual pages are generally shown interactively by the
 man(1) command. When the user types
 man ls, a search is performed for a manual
 page matching ls. The first matching result
 is displayed.
13.2. Sections
Manual pages are grouped into sections.
 Each section contains manual pages for a specific category of
 documentation:
	Section Number	Category
	1	General Commands
	2	System Calls
	3	Library Functions
	4	Kernel Interfaces
	5	File Formats
	6	Games
	7	Miscellaneous
	8	System Manager
	9	Kernel Developer

13.3. Markup
Various markup forms and rendering programs have been used
 for manual pages. FreeBSD has used groff(7) and the newer
 mandoc(1). Most existing FreeBSD manual pages, and all new
 ones, use the mdoc(7) form of markup. This is a simple
 line-based markup that is reasonably expressive. It is mostly
 semantic: parts of text are marked up for what they are, rather
 than for how they should appear when rendered. There is some
 appearance-based markup which is usually best avoided.
Manual page source is usually interpreted and displayed to
 the screen interactively. The source files can be ordinary text
 files or compressed with gzip(1) to save space.
Manual pages can also be rendered to other formats,
 including PostScript for printing or PDF
 generation. See man(1).
Tip:
Testing a new manual page can be challenging when it is
	not located in the normal manual page search path.
	man(1) also does not look in the current directory. If
	the new manual page is in the current directory, prefix
	the filename with a ./:
% man ./mynewmanpage.8
An absolute path can also be used:
% man /home/xsmith/mynewmanpage.8

13.3.1. Manual Page Sections
Manual pages are composed of several standard sections.
	Each section has a title in upper case, and the sections for a
	particular type of manual page appear in a specific order.
	For a category 1 General Command manual page, the sections
	are:
	Section Name	Description
	NAME	Name of the command
	SYNOPSIS	Format of options and arguments
	DESCRIPTION	Description of purpose and usage
	ENVIRONMENT	Environment settings that affect
		operation
	EXIT STATUS	Error codes returned on exit
	EXAMPLES	Examples of usage
	COMPATIBILITY	Compatibility with other implementations
	SEE ALSO	Cross-reference to related manual pages
	STANDARDS	Compatibility with standards like POSIX
	HISTORY	History of implementation
	BUGS	Known bugs
	AUTHORS	People who created the command or wrote the
		manual page.

Some sections are optional, and the combination of
	sections for a specific type of manual page vary. Examples of
	the most common types are shown later in this chapter.
13.3.2. Macros
mdoc(7) markup is based on
	macros. Lines that begin with a dot
	contain macro commands, each two or three letters long. For
	example, consider this portion of the ls(1) manual
	page:

.Dd December 1, 2015 [image: 1]
.Dt LS 1
.Sh NAME [image: 2]
.Nm ls
.Nd list directory contents
.Sh SYNOPSIS [image: 3]
.Nm [image: 4]
.Op Fl -libxo [image: 5]
.Op Fl ABCFGHILPRSTUWZabcdfghiklmnopqrstuwxy1, [image: 6]
.Op Fl D Ar format [image: 7]
.Op Ar [image: 8]
.Sh DESCRIPTION [image: 9]
For each operand that names a
.Ar file
of a type other than
directory,
.Nm
displays its name as well as any requested,
associated information.
For each operand that names a
.Ar file
of type directory,
.Nm
displays the names of files contained
within that directory, as well as any requested, associated
information.
	[image: 1]
	A Document date and
	 Document title are defined.

	[image: 2]
	A Section header for the NAME
	 section is defined. Then the Name
	 of the command and a one-line
	 Name description are defined.

	[image: 3]
	The SYNOPSIS section begins. This section describes
	 the command-line options and arguments accepted.

	[image: 4]
	Name (.Nm) has
	 already been defined, and repeating it here just displays
	 the defined value in the text.

	[image: 5]
	An Optional
	 Flag called -libxo
	 is shown. The Fl macro adds a dash to
	 the beginning of flags, so this appears in the manual
	 page as --libxo.

	[image: 6]
	A long list of optional single-character flags are
	 shown.

	[image: 7]
	An optional -D flag is defined. If
	 the -D flag is given, it must be
	 followed by an Argument. The
	 argument is a format, a string that
	 tells ls(1) what to display and how to display it.
	 Details on the format string are given later in the manual
	 page.

	[image: 8]
	A final optional argument is defined. Because no name
	 is specified for the argument, the default of
	 file ... is used.

	[image: 9]
	The Section header for the
	 DESCRIPTION section is defined.

When rendered with the command man ls,
	the result displayed on the screen looks like this:
LS(1) FreeBSD General Commands Manual LS(1)

NAME
 ls — list directory contents

SYNOPSIS
 ls [--libxo] [-ABCFGHILPRSTUWZabcdfghiklmnopqrstuwxy1,] [-D format]
 [file ...]

DESCRIPTION
 For each operand that names a file of a type other than directory, ls
 displays its name as well as any requested, associated information. For
 each operand that names a file of type directory, ls displays the names
 of files contained within that directory, as well as any requested,
 associated information.
Optional values are shown inside square brackets.
13.3.3. Markup Guidelines
The mdoc(7) markup language is not very strict. For
	clarity and consistency, the FreeBSD Documentation project adds
	some additional style guidelines:
	Only the first letter of macros is upper case
	Always use upper case for the first letter of a
	 macro and lower case for the remaining letters.

	Begin new sentences on new lines
	Start a new sentence on a new line, do not begin it
	 on the same line as an existing sentence.

	Update .Dd when making non-trivial
	 changes to a manual page
	The Document date informs the
	 reader about the last time the manual page was updated.
	 It is important to update whenever non-trivial changes
	 are made to the manual pages. Trivial changes like
	 spelling or punctuation fixes that do not affect usage
	 can be made without updating
	 .Dd.

	Give examples
	Show the reader examples when possible. Even
	 trivial examples are valuable, because what is trivial
	 to the writer is not necessarily trivial to the reader.
	 Three examples are a good goal. A trivial example shows
	 the minimal requirements, a serious example shows actual
	 use, and an in-depth example demonstrates unusual or
	 non-obvious functionality.

	Include the BSD license
	Include the BSD license on new manual pages. The
	 preferred license is available from the Committer's
		Guide.

13.3.4. Markup Tricks
Add a space before punctuation on a line with
	macros. Example:
.Sh SEE ALSO
.Xr geom 4 ,
.Xr boot0cfg 8 ,
.Xr geom 8 ,
.Xr gptboot 8
Note how the commas at the end of the
	.Xr lines have been placed after a space.
	The .Xr macro expects two parameters to
	follow it, the name of an external manual page, and a section
	number. The space separates the punctuation from the section
	number. Without the space, the external links would
	incorrectly point to section 4, or
	8,.
13.3.5. Important Macros
Some very common macros will be shown here. For
	more usage examples, see mdoc(7), groff_mdoc(7), or
	search for actual use in
	/usr/share/man/man* directories. For
	example, to search for examples of the .Bd
	Begin display macro:
% find /usr/share/man/man* | xargs zgrep '.Bd'
13.3.5.1. Organizational Macros
Some macros are used to define logical blocks of a
	 manual page.
	Organizational Macro	Use
	.Sh	Section header. Followed by the name of
		 the section, traditionally all upper case.
		 Think of these as chapter titles.
	.Ss	Subsection header. Followed by the name of
		 the subsection. Used to divide a
		 .Sh section into
		 subsections.
	.Bl	Begin list. Start a list of items.
	.El	End a list.
	.Bd	Begin display. Begin a special area of
		 text, like an indented area.
	.Ed	End display.

13.3.5.2. Inline Macros
Many macros are used to mark up inline text.
	Inline Macro	Use
	.Nm	Name. Called with a name as a parameter on the
		 first use, then used later without the parameter to
		 display the name that has already been
		 defined.
	.Pa	Path to a file. Used to mark up filenames and
		 directory paths.

13.4. Sample Manual Page Structures
This section shows minimal desired man page contents for
 several common categories of manual pages.
13.4.1. Section 1 or 8 Command
The preferred basic structure for a section 1 or 8
	command:
.Dd August 25, 2017
.Dt EXAMPLECMD 8
.Os
.Sh NAME
.Nm examplecmd
.Nd "command to demonstrate section 1 and 8 man pages"
.Sh SYNOPSIS
.Nm
.Op Fl v
.Sh DESCRIPTION
The
.Nm
utility does nothing except demonstrate a trivial but complete
manual page for a section 1 or 8 command.
.Sh SEE ALSO
.Xr exampleconf 5
.Sh AUTHORS
.An Firstname Lastname Aq Mt flastname@example.com
13.4.2. Section 4 Device Driver
The preferred basic structure for a section 4 device
	driver:
.Dd August 25, 2017
.Dt EXAMPLEDRIVER 4
.Os
.Sh NAME
.Nm exampledriver
.Nd "driver to demonstrate section 4 man pages"
.Sh SYNOPSIS
To compile this driver into the kernel, add this line to the
kernel configuration file:
.Bd -ragged -offset indent
.Cd "device exampledriver"
.Ed
.Pp
To load the driver as a module at boot, add this line to
.Xr loader.conf 5 :
.Bd -literal -offset indent
exampledriver_load="YES"
.Ed
.Sh DESCRIPTION
The
.Nm
driver provides an opportunity to show a skeleton or template
file for section 4 manual pages.
.Sh HARDWARE
The
.Nm
driver supports these cards from the aptly-named Nonexistent
Technologies:
.Pp
.Bl -bullet -compact
.It
NT X149.2 (single and dual port)
.It
NT X149.8 (single port)
.El
.Sh DIAGNOSTICS
.Bl -diag
.It "flashing green light"
Something bad happened.
.It "flashing red light"
Something really bad happened.
.It "solid black light"
Power cord is unplugged.
.El
.Sh SEE ALSO
.Xr example 8
.Sh HISTORY
The
.Nm
device driver first appeared in
.Fx 49.2 .
.Sh AUTHORS
.An Firstname Lastname Aq Mt flastname@example.com
13.4.3. Section 5 Configuration File
The preferred basic structure for a section 5
	configuration file:
.Dd August 25, 2017
.Dt EXAMPLECONF 5
.Os
.Sh NAME
.Nm example.conf
.Nd "config file to demonstrate section 5 man pages"
.Sh DESCRIPTION
.Nm
is an example configuration file.
.Sh SEE ALSO
.Xr example 8
.Sh AUTHORS
.An Firstname Lastname Aq Mt flastname@example.com
13.5. Example Manual Pages to Use as Templates
Some manual pages are suitable as in-depth examples.
	Manual Page	Path to Source Location
	cp(1)	/usr/src/bin/cp/cp.1
	vt(4)	/usr/src/share/man/man4/vt.4
	crontab(5)	/usr/src/usr.sbin/cron/crontab/crontab.5
	gpart(8)	/usr/src/sbin/geom/class/part/gpart.8

13.6. Resources
Resources for manual page writers:
	man(1)

	mandoc(1)

	groff_mdoc(7)

	Practical
	 UNIX Manuals: mdoc

	History
	 of UNIX Manpages

Chapter 14. Writing Style
14.1. Tips
Technical documentation can be improved by consistent use of
 several principles. Most of these can be classified into three
 goals: be clear,
 be complete, and
 be concise. These goals can conflict with
 each other. Good writing consists of a balance between
 them.
14.1.1. Be Clear
Clarity is extremely important. The reader may be a
	novice, or reading the document in a second language. Strive
	for simple, uncomplicated text that clearly explains the
	concepts.
Avoid flowery or embellished speech, jokes, or colloquial
	expressions. Write as simply and clearly as possible. Simple
	text is easier to understand and translate.
Keep explanations as short, simple, and clear as possible.
	Avoid empty phrases like “in order to”, which
	usually just means “to”. Avoid potentially
	patronizing words like “basically”. Avoid Latin
	terms like “i.e.” or “cf.”, which
	may be unknown outside of academic or scientific
	groups.
Write in a formal style. Avoid addressing the reader
	as “you”. For example, say
	“copy the file to /tmp”
	rather than “you can copy the file to
	 /tmp”.
Give clear, correct, tested examples.
	A trivial example is better than no example. A good example
	is better yet. Do not give bad examples, identifiable by
	apologies or sentences like “but really it should never
	 be done that way”. Bad examples are worse than no
	examples. Give good examples, because even when
	 warned not to use the example as shown, the
	reader will usually just use the example as shown.
Avoid weasel words like
	“should”, “might”,
	“try”, or “could”. These words
	imply that the speaker is unsure of the facts, and
	create doubt in the reader.
Similarly, give instructions as imperative commands: not
	“you should do this”, but merely
	“do this”.
14.1.2. Be Complete
Do not make assumptions about the reader's abilities or
	skill level. Tell them what they need to know. Give links to
	other documents to provide background information without
	having to recreate it. Put yourself in the reader's place,
	anticipate the questions they will ask, and answer
	them.
14.1.3. Be Concise
While features should be documented completely, sometimes
	there is so much information that the reader cannot easily
	find the specific detail needed. The balance between being
	complete and being concise is a challenge. One approach is to
	have an introduction, then a “quick start”
	section that describes the most common situation, followed by
	an in-depth reference section.
14.2. Guidelines
To promote consistency between the myriad authors of the
 FreeBSD documentation, some guidelines have been drawn up for
 authors to follow.
	Use American English Spelling
	There are several variants of English, with different
	 spellings for the same word. Where spellings differ, use
	 the American English variant. “color”, not
	 “colour”, “rationalize”, not
	 “rationalise”, and so on.
Note:
The use of British English may be accepted in the
	 case of a contributed article, however the spelling must
	 be consistent within the whole document. The other
	 documents such as books, web site, manual pages, etc.
	 will have to use American English.

	Do not use contractions
	Do not use contractions. Always spell the phrase out
	 in full. “Don't use contractions” is
	 wrong.
Avoiding contractions makes for a more formal tone, is
	 more precise, and is slightly easier for
	 translators.

	Use the serial comma
	In a list of items within a paragraph, separate each
	 item from the others with a comma. Separate the last item
	 from the others with a comma and the word
	 “and”.
For example:
This is a list of one, two and three items.

Is this a list of three items, “one”,
	 “two”, and “three”, or a list of
	 two items, “one” and “two and
	 three”?
It is better to be explicit and include a serial
	 comma:
This is a list of one, two, and three items.

	Avoid redundant phrases
	Do not use redundant phrases. In particular,
	 “the command”, “the file”, and
	 “man command” are often redundant.
For example, commands:
Wrong: Use the svn command to
	 update sources.

Right: Use svn to update
	 sources.

Filenames:
Wrong: … in the filename
	 /etc/rc.local…

Right: … in
	 /etc/rc.local…

Manual page references (the second example uses
	 citerefentry with the
	 &man.csh.1; entity):.
Wrong: See man csh for more
	 information.

Right: See csh(1).

	Two spaces between sentences
	Always use two spaces between sentences, as it
	 improves readability and eases use of tools such as
	 Emacs.
A period and spaces followed by a capital letter
	 does not always mark a new sentence, especially in names.
	 “Jordan K. Hubbard” is a good example. It
	 has a capital H following a period and
	 a space, and is certainly not a new sentence.

For more information about writing style, see Elements of
	Style, by William Strunk.
14.3. Style Guide
To keep the source for the documentation consistent when
 many different people are editing it, please follow these style
 conventions.
14.3.1. Letter Case
Tags are entered in lower case, para,
	not PARA.
Text that appears in SGML contexts is generally written in
	upper case, <!ENTITY…>, and
	<!DOCTYPE…>,
	not
	<!entity…> and
	<!doctype…>.
14.3.2. Acronyms
Acronyms should be defined the first time they appear in a
	document, as in:
	“Network Time Protocol (NTP)”.
	After the acronym has been defined, use the acronym alone
	unless it makes more sense contextually to use the whole term.
	Acronyms are usually defined only once per chapter or per
	document.
All acronyms should be enclosed in
	acronym tags.
14.3.3. Indentation
The first line in each file starts with no indentation,
	regardless of the indentation level of
	the file which might contain the current file.
Opening tags increase the indentation level by two spaces.
	Closing tags decrease the indentation level by two spaces.
	Blocks of eight spaces at the start of a line should be
	replaced with a tab. Do not use spaces in front of tabs, and
	do not add extraneous whitespace at the end of a line.
	Content within elements should be indented by two spaces if
	the content runs over more than one line.
For example, the source for this section looks like
	this:
<chapter>
 <title>...</title>

 <sect1>
 <title>...</title>

 <sect2>
 <title>Indentation</title>

 <para>The first line in each file starts with no indentation,
	<emphasis>regardless</emphasis> of the indentation level of
	the file which might contain the current file.</para>

 ...
 </sect2>
 </sect1>
</chapter>
Tags containing long attributes follow the same
	rules. Following the indentation rules in this case helps
	editors and writers see which content is inside the
	tags:
<para>See the <link
 linkend="gmirror-troubleshooting">Troubleshooting</link>
 section if there are problems booting. Powering down and
 disconnecting the original <filename>ada0</filename> disk
 will allow it to be kept as an offline backup.</para>

<para>It is also possible to journal the boot disk of a &os;
 system. Refer to the article <link
 xlink:href="&url.articles.gjournal-desktop;">Implementing UFS
 Journaling on a Desktop PC</link> for detailed
 instructions.</para>
When an element is too long to fit on the remainder of a
	line without wrapping, moving the start tag to the next line
	can make the source easier to read. In this example, the
	systemitem element has been moved to the
	next line to avoid wrapping and indenting:
<para>With file flags, even
 <systemitem class="username">root</systemitem> can be
 prevented from removing or altering files.</para>
Configurations to help various text editors conform to
	these guidelines can be found in
	Chapter 15, Editor Configuration.
14.3.4. Tag Style
14.3.4.1. Tag Spacing
Tags that start at the same indent as a previous tag
	 should be separated by a blank line, and those that are not
	 at the same indent as a previous tag should not:
<article lang='en'>
 <articleinfo>
 <title>NIS</title>

 <pubdate>October 1999</pubdate>

 <abstract>
 <para>...
	...
	...</para>
 </abstract>
 </articleinfo>

 <sect1>
 <title>...</title>

 <para>...</para>
 </sect1>

 <sect1>
 <title>...</title>

 <para>...</para>
 </sect1>
</article>

14.3.4.2. Separating Tags
Tags like itemizedlist which will
	 always have further tags inside them, and in fact do not
	 take character data themselves, are always on a line by
	 themselves.
Tags like para and
	 term do not need other tags to contain
	 normal character data, and their contents begin immediately
	 after the tag, on the same line.
The same applies to when these two types of tags
	 close.
This leads to an obvious problem when mixing these
	 tags.
When a starting tag which cannot contain character data
	 directly follows a tag of the type that requires other tags
	 within it to use character data, they are on separate lines.
	 The second tag should be properly indented.
When a tag which can contain character data closes
	 directly after a tag which cannot contain character data
	 closes, they co-exist on the same line.
14.3.5. Whitespace Changes
Do not commit changes
	 to content at the same time as changes to
	 formatting.
When content and whitespace changes are kept separate,
	translation teams can easily see whether a change was content
	that must be translated or only whitespace.
For example, if two sentences have been added to a
	paragraph so that the line lengths now go
	over 80 columns, first commit the change with the too-long
	lines. Then fix the line wrapping, and commit this
	second change. In the commit message for the second change,
	indicate that this is a whitespace-only change that can be
	ignored by translators.
14.3.6. Non-Breaking Space
Avoid line breaks in places where they look ugly or make
	it difficult to follow a sentence. Line breaks depend on the
	width of the chosen output medium. In particular, viewing the
	HTML documentation with a text browser can lead to badly
	formatted paragraphs like the next one:
Data capacity ranges from 40 MB to 15
GB. Hardware compression …
The general entity prohibits
	line breaks between parts belonging together. Use
	non-breaking spaces in the following places:
	between numbers and units:
57600 bps

	between program names and version numbers:
&os; 9.2

	between multiword names (use with caution when
	 applying this to more than 3-4 word names like
	 “The FreeBSD Brazilian Portuguese Documentation
	 Project”):
Sun Microsystems

14.4. Word List
This list of words shows the correct spelling and
 capitalization when used in FreeBSD documentation. If a word is
 not on this list, ask about it on the FreeBSD documentation project mailing list.
	Word	XML Code	Notes
	CD-ROM	<acronym>CD-ROM</acronym>	
	DoS (Denial of Service)	<acronym>DoS</acronym>	
	email	 	
	file system	 	
	IPsec	 	
	Internet	 	
	manual page	 	
	mail server	 	
	name server	 	
	Ports Collection	 	
	read-only	 	
	Soft Updates	 	
	stdin	<varname>stdin</varname>	
	stdout	<varname>stdout</varname>	
	stderr	<varname>stderr</varname>	
	Subversion	<application>Subversion</application>	Do not refer to the Subversion application as
	 SVN in upper case. To refer to the
	 command, use <command>svn</command>.
	UNIX®	&unix;	
	userland	 	things that apply to user space, not the
	 kernel
	web server	 	

Chapter 15. Editor Configuration
Adjusting text editor configuration can make working on
 document files quicker and easier, and help documents conform to
 FDP guidelines.
15.1. Vim
Install from editors/vim or
 editors/vim-lite, then follow the
 configuration instructions in
 Section 15.1.2, “Configuration”.
15.1.1. Use
Press P to reformat paragraphs or text
	that has been selected in Visual mode. Press
	T to replace groups of eight spaces with a
	tab.
15.1.2. Configuration
Edit ~/.vimrc, adding these
	lines to the end of the file:
if has("autocmd")
 au BufNewFile,BufRead *.sgml,*.ent,*.xsl,*.xml call Set_SGML()
 au BufNewFile,BufRead *.[1-9] call ShowSpecial()
endif " has(autocmd)

function Set_Highlights()
 "match ExtraWhitespace /^\s* \s*\|\s\+$/
 highlight default link OverLength ErrorMsg
 match OverLength /\%71v.\+/
 return 0
endfunction

function ShowSpecial()
 setlocal list listchars=tab:>>,trail:*,eol:$
 hi def link nontext ErrorMsg
 return 0
endfunction " ShowSpecial()

function Set_SGML()
 setlocal number
 syn match sgmlSpecial "&[^;]*;"
 setlocal syntax=sgml
 setlocal filetype=xml
 setlocal shiftwidth=2
 setlocal textwidth=70
 setlocal tabstop=8
 setlocal softtabstop=2
 setlocal formatprg="fmt -p"
 setlocal autoindent
 setlocal smartindent
 " Rewrap paragraphs
 noremap P gqj
 " Replace spaces with tabs
 noremap T :s/ /\t/<CR>
 call ShowSpecial()
 call Set_Highlights()
 return 0
endfunction " Set_SGML()
15.2. Emacs
Install from editors/emacs or
 editors/emacs-devel.
15.2.1. Validation
Emacs's nxml-mode uses compact relax NG schemas for
	validating XML. A compact relax NG schema for FreeBSD's
	extension to DocBook 5.0 is included in the documentation
	repository. To configure nxml-mode to validate using this
	schema, create
	~/.emacs.d/schema/schemas.xml and add
	these lines to the file:
<locatingRules xmlns="http://thaiopensource.com/ns/locating-rules/1.0">
 <documentElement localName="section" typeId="DocBook">
 <documentElement localName="chapter" typeId="DocBook">
 <documentElement localName="article" typeId="DocBook">
 <documentElement localName="book" typeId="DocBook">
 <typeId id="DocBook" uri="/usr/local/share/xml/docbook/5.0/rng/docbook.rnc">
</locatingRules>
15.2.2. Automated Proofreading with Flycheck and Igor
The Flycheck package is available from Milkypostman's
	Emacs Lisp Package Archive (MELPA). If
	MELPA is not already in Emacs's
	packages-archives, it can be added by evaluating
(add-to-list 'package-archives '("melpa" . "http://stable.melpa.org/packages/") t)
Add the line to Emacs's initialization file (one of
	~/.emacs,
	~/.emacs.el, or
	~.emacs.d/init.el) to make this change
	permanent.
To install Flycheck, evaluate
(package-install 'flycheck)
Create a Flycheck checker for
	textproc/igor by evaluating
(flycheck-define-checker igor
 "FreeBSD Documentation Project sanity checker.

See URLs https://www.freebsd.org/docproj/ and
http://www.freshports.org/textproc/igor/."
 :command ("igor" "-X" source-inplace)
 :error-parser flycheck-parse-checkstyle
 :modes (nxml-mode)
 :standard-input t)

 (add-to-list 'flycheck-checkers 'igor 'append)
Again, add these lines to Emacs's initialization file to
	make the changes permanent.
15.2.3. FreeBSD Documentation Specific Settings
To apply settings specific to the FreeBSD documentation
	project, create .dir-locals.el in the
	root directory of the documentation repository and add these
	lines to the file:
;;; Directory Local Variables
;;; For more information see (info "(emacs) Directory Variables")

((nxml-mode
 (eval . (turn-on-auto-fill))
 (fill-column . 70)
 (eval . (require 'flycheck))
 (eval . (flycheck-mode 1))
 (flycheck-checker . igor)
 (eval . (add-to-list 'rng-schema-locating-files "~/.emacs.d/schema/schemas.xml"))))
15.3. nano
Install from
 editors/nano or
 editors/nano-devel.
15.3.1. Configuration
Copy the sample XML syntax highlight
	file to the user's home directory:
% cp /usr/local/share/nano/xml.nanorc ~/.nanorc
Use an editor to replace the lines in the
	~/.nanorc syntax "xml"
	block with these rules:
syntax "xml" "\.([jrs]html?|xml|xslt?)$"
trailing whitespace
color ,blue "[[:space:]]+$"
multiples of eight spaces at the start a line
(after zero or more tabs) should be a tab
color ,blue "^([TAB]*[]{8})+"
tabs after spaces
color ,yellow "()+TAB"
highlight indents that have an odd number of spaces
color ,red "^(([]{2})+|(TAB+))*[]{1}[^]{1}"
lines longer than 70 characters
color ,yellow "^(.{71})|(TAB.{63})|(TAB{2}.{55})|(TAB{3}.{47}).+$"
Process the file to create embedded tabs:
% perl -i'' -pe 's/TAB/\t/g' ~/.nanorc
15.3.2. Use
Specify additional helpful options when running the
	editor:
% nano -AKipwz -r 70 -T8 chapter.xml
Users of csh(1) can define an alias in
	~/.cshrc to automate these
	options:
alias nano "nano -AKipwz -r 70 -T8"
After the alias is defined, the options will be added
	automatically:
% nano chapter.xml
Chapter 16. See Also
This document is deliberately not an exhaustive discussion of
 XML, the DTDs listed, and the FreeBSD Documentation Project. For
 more information about these, you are encouraged to see the
 following web sites.
16.1. The FreeBSD Documentation Project
	The FreeBSD
	 Documentation Project web pages

	The FreeBSD
	 Handbook

16.2. XML
	W3C's XML page
	 SGML/XML web page

16.3. HTML
	The World Wide Web
	 Consortium

	The HTML
	 4.0 specification

16.4. DocBook
	The
	 DocBook Technical Committee, maintainers of the
	 DocBook DTD

	DocBook: The
	 Definitive Guide, the online documentation for the
	 DocBook DTD

	The DocBook
	 Open Repository contains DSSSL stylesheets and
	 other resources for people using DocBook

Appendix A. Examples
These examples are not exhaustive—they do not contain
 all the elements that might be desirable to use, particularly in a
 document's front matter. For more examples of DocBook markup,
 examine the XML source for this and other
 documents available in the Subversion
 doc repository, or available online starting at
 http://svnweb.FreeBSD.org/doc/.
A.1. DocBook book
Example A.1. DocBook book
<!DOCTYPE book PUBLIC "-//FreeBSD//DTD DocBook XML V5.0-Based Extension//EN"
	"http://www.FreeBSD.org/XML/share/xml/freebsd50.dtd">

<book xmlns="http://docbook.org/ns/docbook"
 xmlns:xlink="http://www.w3.org/1999/xlink" version="5.0"
 xml:lang="en">

 <info>
 <title>An Example Book</title>

 <author>
 <personname>
 <firstname>Your first name</firstname>
 <surname>Your surname</surname>
 </personname>

 <affiliation>
	<address>
	 <email>foo@example.com</email>
	</address>
 </affiliation>
 </author>

 <copyright>
 <year>2000</year>
 <holder>Copyright string here</holder>
 </copyright>

 <abstract>
 <para>If your book has an abstract then it should go here.</para>
 </abstract>
 </info>

 <preface>
 <title>Preface</title>

 <para>Your book may have a preface, in which case it should be placed
 here.</para>
 </preface>

 <chapter>
 <title>My First Chapter</title>

 <para>This is the first chapter in my book.</para>

 <sect1>
 <title>My First Section</title>

 <para>This is the first section in my book.</para>
 </sect1>
 </chapter>
</book>

A.2. DocBook article
Example A.2. DocBook article
<!DOCTYPE article PUBLIC "-//FreeBSD//DTD DocBook XML V5.0-Based Extension//EN"
	"http://www.FreeBSD.org/XML/share/xml/freebsd50.dtd">

<article xmlns="http://docbook.org/ns/docbook"
 xmlns:xlink="http://www.w3.org/1999/xlink" version="5.0"
 xml:lang="en">

 <info>
 <title>An Example Article</title>

 <author>
 <personname>
 <firstname>Your first name</firstname>
 <surname>Your surname</surname>
 </personname>

 <affiliation>
	<address>
	 <email>foo@example.com</email>
	</address>
 </affiliation>
 </author>

 <copyright>
 <year>2000</year>
 <holder>Copyright string here</holder>
 </copyright>

 <abstract>
 <para>If your article has an abstract then it should go here.</para>
 </abstract>
 </info>

 <sect1>
 <title>My First Section</title>

 <para>This is the first section in my article.</para>

 <sect2>
 <title>My First Sub-Section</title>

 <para>This is the first sub-section in my article.</para>
 </sect2>
 </sect1>
</article>

Index
F
	Formal Public Identifier, The DOCTYPE Declaration, Formal Public Identifiers
	(FPIs)
	

OEBPS/legalnotice.xhtml
Copyright

Redistribution and use in source (XML DocBook) and 'compiled'
 forms (XML, HTML, PDF, PostScript, RTF and so forth) with or without
 modification, are permitted provided that the following conditions are
 met:

		Redistributions of source code (XML DocBook) must retain the
 above copyright notice, this list of conditions and the following
 disclaimer as the first lines of this file unmodified.

		Redistributions in compiled form (transformed to other DTDs,
 converted to PDF, PostScript, RTF and other formats) must
 reproduce the above copyright notice, this list of conditions and
 the following disclaimer in the documentation and/or other
 materials provided with the distribution.

Important:

THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION
 PROJECT "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
 BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
 THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT,
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
 DAMAGE.

