# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ A collections of builtin functions """ import inspect import sys import functools import warnings from typing import ( Any, cast, Callable, Dict, List, Iterable, overload, Optional, Tuple, TYPE_CHECKING, Union, ValuesView, ) from pyspark import since, SparkContext from pyspark.rdd import PythonEvalType from pyspark.sql.column import Column, _to_java_column, _to_seq, _create_column_from_literal from pyspark.sql.dataframe import DataFrame from pyspark.sql.types import ArrayType, DataType, StringType, StructType # Keep UserDefinedFunction import for backwards compatible import; moved in SPARK-22409 from pyspark.sql.udf import UserDefinedFunction, _create_udf # noqa: F401 # Keep pandas_udf and PandasUDFType import for backwards compatible import; moved in SPARK-28264 from pyspark.sql.pandas.functions import pandas_udf, PandasUDFType # noqa: F401 from pyspark.sql.utils import to_str if TYPE_CHECKING: from pyspark.sql._typing import ( ColumnOrName, ColumnOrName_, DataTypeOrString, UserDefinedFunctionLike, ) # Note to developers: all of PySpark functions here take string as column names whenever possible. # Namely, if columns are referred as arguments, they can be always both Column or string, # even though there might be few exceptions for legacy or inevitable reasons. # If you are fixing other language APIs together, also please note that Scala side is not the case # since it requires to make every single overridden definition. def _get_jvm_function(name: str, sc: SparkContext) -> Callable: """ Retrieves JVM function identified by name from Java gateway associated with sc. """ assert sc._jvm is not None return getattr(sc._jvm.functions, name) def _invoke_function(name: str, *args: Any) -> Column: """ Invokes JVM function identified by name with args and wraps the result with :class:`~pyspark.sql.Column`. """ assert SparkContext._active_spark_context is not None jf = _get_jvm_function(name, SparkContext._active_spark_context) return Column(jf(*args)) def _invoke_function_over_columns(name: str, *cols: "ColumnOrName") -> Column: """ Invokes n-ary JVM function identified by name and wraps the result with :class:`~pyspark.sql.Column`. """ return _invoke_function(name, *(_to_java_column(col) for col in cols)) def _invoke_function_over_seq_of_columns(name: str, cols: "Iterable[ColumnOrName]") -> Column: """ Invokes unary JVM function identified by name with and wraps the result with :class:`~pyspark.sql.Column`. """ sc = SparkContext._active_spark_context assert sc is not None and sc._jvm is not None return _invoke_function(name, _to_seq(sc, cols, _to_java_column)) def _invoke_binary_math_function(name: str, col1: Any, col2: Any) -> Column: """ Invokes binary JVM math function identified by name and wraps the result with :class:`~pyspark.sql.Column`. """ return _invoke_function( name, # For legacy reasons, the arguments here can be implicitly converted into floats, # if they are not columns or strings. _to_java_column(col1) if isinstance(col1, (str, Column)) else float(col1), _to_java_column(col2) if isinstance(col2, (str, Column)) else float(col2), ) def _options_to_str(options: Optional[Dict[str, Any]] = None) -> Dict[str, Optional[str]]: if options: return {key: to_str(value) for (key, value) in options.items()} return {} [docs]def lit(col: Any) -> Column: """ Creates a :class:`~pyspark.sql.Column` of literal value. .. versionadded:: 1.3.0 Examples -------- >>> df.select(lit(5).alias('height')).withColumn('spark_user', lit(True)).take(1) [Row(height=5, spark_user=True)] """ return col if isinstance(col, Column) else _invoke_function("lit", col) [docs]@since(1.3) def col(col: str) -> Column: """ Returns a :class:`~pyspark.sql.Column` based on the given column name. Examples -------- >>> col('x') Column<'x'> >>> column('x') Column<'x'> """ return _invoke_function("col", col) column = col [docs]@since(1.3) def asc(col: "ColumnOrName") -> Column: """ Returns a sort expression based on the ascending order of the given column name. """ return col.asc() if isinstance(col, Column) else _invoke_function("asc", col) [docs]@since(1.3) def desc(col: "ColumnOrName") -> Column: """ Returns a sort expression based on the descending order of the given column name. """ return col.desc() if isinstance(col, Column) else _invoke_function("desc", col) [docs]@since(1.3) def sqrt(col: "ColumnOrName") -> Column: """ Computes the square root of the specified float value. """ return _invoke_function_over_columns("sqrt", col) [docs]@since(1.3) def abs(col: "ColumnOrName") -> Column: """ Computes the absolute value. """ return _invoke_function_over_columns("abs", col) [docs]@since(1.3) def max(col: "ColumnOrName") -> Column: """ Aggregate function: returns the maximum value of the expression in a group. """ return _invoke_function_over_columns("max", col) [docs]@since(1.3) def min(col: "ColumnOrName") -> Column: """ Aggregate function: returns the minimum value of the expression in a group. """ return _invoke_function_over_columns("min", col) [docs]def max_by(col: "ColumnOrName", ord: "ColumnOrName") -> Column: """ Returns the value associated with the maximum value of ord. .. versionadded:: 3.3.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str target column that the value will be returned ord : :class:`~pyspark.sql.Column` or str column to be maximized Returns ------- :class:`~pyspark.sql.Column` value associated with the maximum value of ord. Examples -------- >>> df = spark.createDataFrame([ ... ("Java", 2012, 20000), ("dotNET", 2012, 5000), ... ("dotNET", 2013, 48000), ("Java", 2013, 30000)], ... schema=("course", "year", "earnings")) >>> df.groupby("course").agg(max_by("year", "earnings")).show() +------+----------------------+ |course|max_by(year, earnings)| +------+----------------------+ | Java| 2013| |dotNET| 2013| +------+----------------------+ """ return _invoke_function_over_columns("max_by", col, ord) [docs]def min_by(col: "ColumnOrName", ord: "ColumnOrName") -> Column: """ Returns the value associated with the minimum value of ord. .. versionadded:: 3.3.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str target column that the value will be returned ord : :class:`~pyspark.sql.Column` or str column to be minimized Returns ------- :class:`~pyspark.sql.Column` value associated with the minimum value of ord. Examples -------- >>> df = spark.createDataFrame([ ... ("Java", 2012, 20000), ("dotNET", 2012, 5000), ... ("dotNET", 2013, 48000), ("Java", 2013, 30000)], ... schema=("course", "year", "earnings")) >>> df.groupby("course").agg(min_by("year", "earnings")).show() +------+----------------------+ |course|min_by(year, earnings)| +------+----------------------+ | Java| 2012| |dotNET| 2012| +------+----------------------+ """ return _invoke_function_over_columns("min_by", col, ord) [docs]@since(1.3) def count(col: "ColumnOrName") -> Column: """ Aggregate function: returns the number of items in a group. """ return _invoke_function_over_columns("count", col) [docs]@since(1.3) def sum(col: "ColumnOrName") -> Column: """ Aggregate function: returns the sum of all values in the expression. """ return _invoke_function_over_columns("sum", col) [docs]@since(1.3) def avg(col: "ColumnOrName") -> Column: """ Aggregate function: returns the average of the values in a group. """ return _invoke_function_over_columns("avg", col) [docs]@since(1.3) def mean(col: "ColumnOrName") -> Column: """ Aggregate function: returns the average of the values in a group. """ return _invoke_function_over_columns("mean", col) [docs]@since(1.3) def sumDistinct(col: "ColumnOrName") -> Column: """ Aggregate function: returns the sum of distinct values in the expression. .. deprecated:: 3.2.0 Use :func:`sum_distinct` instead. """ warnings.warn("Deprecated in 3.2, use sum_distinct instead.", FutureWarning) return sum_distinct(col) [docs]@since(3.2) def sum_distinct(col: "ColumnOrName") -> Column: """ Aggregate function: returns the sum of distinct values in the expression. """ return _invoke_function_over_columns("sum_distinct", col) [docs]def product(col: "ColumnOrName") -> Column: """ Aggregate function: returns the product of the values in a group. .. versionadded:: 3.2.0 Parameters ---------- col : str, :class:`Column` column containing values to be multiplied together Examples -------- >>> df = spark.range(1, 10).toDF('x').withColumn('mod3', col('x') % 3) >>> prods = df.groupBy('mod3').agg(product('x').alias('product')) >>> prods.orderBy('mod3').show() +----+-------+ |mod3|product| +----+-------+ | 0| 162.0| | 1| 28.0| | 2| 80.0| +----+-------+ """ return _invoke_function_over_columns("product", col) [docs]def acos(col: "ColumnOrName") -> Column: """ Computes inverse cosine of the input column. .. versionadded:: 1.4.0 Returns ------- :class:`~pyspark.sql.Column` inverse cosine of `col`, as if computed by `java.lang.Math.acos()` """ return _invoke_function_over_columns("acos", col) [docs]def acosh(col: "ColumnOrName") -> Column: """ Computes inverse hyperbolic cosine of the input column. .. versionadded:: 3.1.0 Returns ------- :class:`~pyspark.sql.Column` """ return _invoke_function_over_columns("acosh", col) [docs]def asin(col: "ColumnOrName") -> Column: """ Computes inverse sine of the input column. .. versionadded:: 1.3.0 Returns ------- :class:`~pyspark.sql.Column` inverse sine of `col`, as if computed by `java.lang.Math.asin()` """ return _invoke_function_over_columns("asin", col) [docs]def asinh(col: "ColumnOrName") -> Column: """ Computes inverse hyperbolic sine of the input column. .. versionadded:: 3.1.0 Returns ------- :class:`~pyspark.sql.Column` """ return _invoke_function_over_columns("asinh", col) [docs]def atan(col: "ColumnOrName") -> Column: """ Compute inverse tangent of the input column. .. versionadded:: 1.4.0 Returns ------- :class:`~pyspark.sql.Column` inverse tangent of `col`, as if computed by `java.lang.Math.atan()` """ return _invoke_function_over_columns("atan", col) [docs]def atanh(col: "ColumnOrName") -> Column: """ Computes inverse hyperbolic tangent of the input column. .. versionadded:: 3.1.0 Returns ------- :class:`~pyspark.sql.Column` """ return _invoke_function_over_columns("atanh", col) [docs]@since(1.4) def cbrt(col: "ColumnOrName") -> Column: """ Computes the cube-root of the given value. """ return _invoke_function_over_columns("cbrt", col) [docs]@since(1.4) def ceil(col: "ColumnOrName") -> Column: """ Computes the ceiling of the given value. """ return _invoke_function_over_columns("ceil", col) [docs]def cos(col: "ColumnOrName") -> Column: """ Computes cosine of the input column. .. versionadded:: 1.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str angle in radians Returns ------- :class:`~pyspark.sql.Column` cosine of the angle, as if computed by `java.lang.Math.cos()`. """ return _invoke_function_over_columns("cos", col) [docs]def cosh(col: "ColumnOrName") -> Column: """ Computes hyperbolic cosine of the input column. .. versionadded:: 1.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str hyperbolic angle Returns ------- :class:`~pyspark.sql.Column` hyperbolic cosine of the angle, as if computed by `java.lang.Math.cosh()` """ return _invoke_function_over_columns("cosh", col) [docs]def cot(col: "ColumnOrName") -> Column: """ Computes cotangent of the input column. .. versionadded:: 3.3.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str Angle in radians Returns ------- :class:`~pyspark.sql.Column` Cotangent of the angle. """ return _invoke_function_over_columns("cot", col) [docs]def csc(col: "ColumnOrName") -> Column: """ Computes cosecant of the input column. .. versionadded:: 3.3.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str Angle in radians Returns ------- :class:`~pyspark.sql.Column` Cosecant of the angle. """ return _invoke_function_over_columns("csc", col) [docs]@since(1.4) def exp(col: "ColumnOrName") -> Column: """ Computes the exponential of the given value. """ return _invoke_function_over_columns("exp", col) [docs]@since(1.4) def expm1(col: "ColumnOrName") -> Column: """ Computes the exponential of the given value minus one. """ return _invoke_function_over_columns("expm1", col) [docs]@since(1.4) def floor(col: "ColumnOrName") -> Column: """ Computes the floor of the given value. """ return _invoke_function_over_columns("floor", col) @since(1.4) def log(col: "ColumnOrName") -> Column: """ Computes the natural logarithm of the given value. """ return _invoke_function_over_columns("log", col) [docs]@since(1.4) def log10(col: "ColumnOrName") -> Column: """ Computes the logarithm of the given value in Base 10. """ return _invoke_function_over_columns("log10", col) [docs]@since(1.4) def log1p(col: "ColumnOrName") -> Column: """ Computes the natural logarithm of the given value plus one. """ return _invoke_function_over_columns("log1p", col) [docs]@since(1.4) def rint(col: "ColumnOrName") -> Column: """ Returns the double value that is closest in value to the argument and is equal to a mathematical integer. """ return _invoke_function_over_columns("rint", col) [docs]def sec(col: "ColumnOrName") -> Column: """ Computes secant of the input column. .. versionadded:: 3.3.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str Angle in radians Returns ------- :class:`~pyspark.sql.Column` Secant of the angle. """ return _invoke_function_over_columns("sec", col) [docs]@since(1.4) def signum(col: "ColumnOrName") -> Column: """ Computes the signum of the given value. """ return _invoke_function_over_columns("signum", col) [docs]def sin(col: "ColumnOrName") -> Column: """ Computes sine of the input column. .. versionadded:: 1.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str Returns ------- :class:`~pyspark.sql.Column` sine of the angle, as if computed by `java.lang.Math.sin()` """ return _invoke_function_over_columns("sin", col) [docs]def sinh(col: "ColumnOrName") -> Column: """ Computes hyperbolic sine of the input column. .. versionadded:: 1.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str hyperbolic angle Returns ------- :class:`~pyspark.sql.Column` hyperbolic sine of the given value, as if computed by `java.lang.Math.sinh()` """ return _invoke_function_over_columns("sinh", col) [docs]def tan(col: "ColumnOrName") -> Column: """ Computes tangent of the input column. .. versionadded:: 1.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str angle in radians Returns ------- :class:`~pyspark.sql.Column` tangent of the given value, as if computed by `java.lang.Math.tan()` """ return _invoke_function_over_columns("tan", col) [docs]def tanh(col: "ColumnOrName") -> Column: """ Computes hyperbolic tangent of the input column. .. versionadded:: 1.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str hyperbolic angle Returns ------- :class:`~pyspark.sql.Column` hyperbolic tangent of the given value as if computed by `java.lang.Math.tanh()` """ return _invoke_function_over_columns("tanh", col) [docs]@since(1.4) def toDegrees(col: "ColumnOrName") -> Column: """ .. deprecated:: 2.1.0 Use :func:`degrees` instead. """ warnings.warn("Deprecated in 2.1, use degrees instead.", FutureWarning) return degrees(col) [docs]@since(1.4) def toRadians(col: "ColumnOrName") -> Column: """ .. deprecated:: 2.1.0 Use :func:`radians` instead. """ warnings.warn("Deprecated in 2.1, use radians instead.", FutureWarning) return radians(col) [docs]@since(1.4) def bitwiseNOT(col: "ColumnOrName") -> Column: """ Computes bitwise not. .. deprecated:: 3.2.0 Use :func:`bitwise_not` instead. """ warnings.warn("Deprecated in 3.2, use bitwise_not instead.", FutureWarning) return bitwise_not(col) [docs]@since(3.2) def bitwise_not(col: "ColumnOrName") -> Column: """ Computes bitwise not. """ return _invoke_function_over_columns("bitwise_not", col) [docs]@since(2.4) def asc_nulls_first(col: "ColumnOrName") -> Column: """ Returns a sort expression based on the ascending order of the given column name, and null values return before non-null values. """ return ( col.asc_nulls_first() if isinstance(col, Column) else _invoke_function("asc_nulls_first", col) ) [docs]@since(2.4) def asc_nulls_last(col: "ColumnOrName") -> Column: """ Returns a sort expression based on the ascending order of the given column name, and null values appear after non-null values. """ return ( col.asc_nulls_last() if isinstance(col, Column) else _invoke_function("asc_nulls_last", col) ) [docs]@since(2.4) def desc_nulls_first(col: "ColumnOrName") -> Column: """ Returns a sort expression based on the descending order of the given column name, and null values appear before non-null values. """ return ( col.desc_nulls_first() if isinstance(col, Column) else _invoke_function("desc_nulls_first", col) ) [docs]@since(2.4) def desc_nulls_last(col: "ColumnOrName") -> Column: """ Returns a sort expression based on the descending order of the given column name, and null values appear after non-null values. """ return ( col.desc_nulls_last() if isinstance(col, Column) else _invoke_function("desc_nulls_last", col) ) [docs]@since(1.6) def stddev(col: "ColumnOrName") -> Column: """ Aggregate function: alias for stddev_samp. """ return _invoke_function_over_columns("stddev", col) [docs]@since(1.6) def stddev_samp(col: "ColumnOrName") -> Column: """ Aggregate function: returns the unbiased sample standard deviation of the expression in a group. """ return _invoke_function_over_columns("stddev_samp", col) [docs]@since(1.6) def stddev_pop(col: "ColumnOrName") -> Column: """ Aggregate function: returns population standard deviation of the expression in a group. """ return _invoke_function_over_columns("stddev_pop", col) [docs]@since(1.6) def variance(col: "ColumnOrName") -> Column: """ Aggregate function: alias for var_samp """ return _invoke_function_over_columns("variance", col) [docs]@since(1.6) def var_samp(col: "ColumnOrName") -> Column: """ Aggregate function: returns the unbiased sample variance of the values in a group. """ return _invoke_function_over_columns("var_samp", col) [docs]@since(1.6) def var_pop(col: "ColumnOrName") -> Column: """ Aggregate function: returns the population variance of the values in a group. """ return _invoke_function_over_columns("var_pop", col) [docs]@since(1.6) def skewness(col: "ColumnOrName") -> Column: """ Aggregate function: returns the skewness of the values in a group. """ return _invoke_function_over_columns("skewness", col) [docs]@since(1.6) def kurtosis(col: "ColumnOrName") -> Column: """ Aggregate function: returns the kurtosis of the values in a group. """ return _invoke_function_over_columns("kurtosis", col) [docs]def collect_list(col: "ColumnOrName") -> Column: """ Aggregate function: returns a list of objects with duplicates. .. versionadded:: 1.6.0 Notes ----- The function is non-deterministic because the order of collected results depends on the order of the rows which may be non-deterministic after a shuffle. Examples -------- >>> df2 = spark.createDataFrame([(2,), (5,), (5,)], ('age',)) >>> df2.agg(collect_list('age')).collect() [Row(collect_list(age)=[2, 5, 5])] """ return _invoke_function_over_columns("collect_list", col) [docs]def collect_set(col: "ColumnOrName") -> Column: """ Aggregate function: returns a set of objects with duplicate elements eliminated. .. versionadded:: 1.6.0 Notes ----- The function is non-deterministic because the order of collected results depends on the order of the rows which may be non-deterministic after a shuffle. Examples -------- >>> df2 = spark.createDataFrame([(2,), (5,), (5,)], ('age',)) >>> df2.agg(array_sort(collect_set('age')).alias('c')).collect() [Row(c=[2, 5])] """ return _invoke_function_over_columns("collect_set", col) [docs]def degrees(col: "ColumnOrName") -> Column: """ Converts an angle measured in radians to an approximately equivalent angle measured in degrees. .. versionadded:: 2.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str angle in radians Returns ------- :class:`~pyspark.sql.Column` angle in degrees, as if computed by `java.lang.Math.toDegrees()` """ return _invoke_function_over_columns("degrees", col) [docs]def radians(col: "ColumnOrName") -> Column: """ Converts an angle measured in degrees to an approximately equivalent angle measured in radians. .. versionadded:: 2.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str angle in degrees Returns ------- :class:`~pyspark.sql.Column` angle in radians, as if computed by `java.lang.Math.toRadians()` """ return _invoke_function_over_columns("radians", col) @overload def atan2(col1: "ColumnOrName", col2: "ColumnOrName") -> Column: ... @overload def atan2(col1: float, col2: "ColumnOrName") -> Column: ... @overload def atan2(col1: "ColumnOrName", col2: float) -> Column: ... [docs]def atan2(col1: Union["ColumnOrName", float], col2: Union["ColumnOrName", float]) -> Column: """ .. versionadded:: 1.4.0 Parameters ---------- col1 : str, :class:`~pyspark.sql.Column` or float coordinate on y-axis col2 : str, :class:`~pyspark.sql.Column` or float coordinate on x-axis Returns ------- :class:`~pyspark.sql.Column` the `theta` component of the point (`r`, `theta`) in polar coordinates that corresponds to the point (`x`, `y`) in Cartesian coordinates, as if computed by `java.lang.Math.atan2()` """ return _invoke_binary_math_function("atan2", col1, col2) @overload def hypot(col1: "ColumnOrName", col2: "ColumnOrName") -> Column: ... @overload def hypot(col1: float, col2: "ColumnOrName") -> Column: ... @overload def hypot(col1: "ColumnOrName", col2: float) -> Column: ... [docs]@since(1.4) def hypot(col1: Union["ColumnOrName", float], col2: Union["ColumnOrName", float]) -> Column: """ Computes ``sqrt(a^2 + b^2)`` without intermediate overflow or underflow. """ return _invoke_binary_math_function("hypot", col1, col2) @overload def pow(col1: "ColumnOrName", col2: "ColumnOrName") -> Column: ... @overload def pow(col1: float, col2: "ColumnOrName") -> Column: ... @overload def pow(col1: "ColumnOrName", col2: float) -> Column: ... [docs]@since(1.4) def pow(col1: Union["ColumnOrName", float], col2: Union["ColumnOrName", float]) -> Column: """ Returns the value of the first argument raised to the power of the second argument. """ return _invoke_binary_math_function("pow", col1, col2) [docs]@since(1.6) def row_number() -> Column: """ Window function: returns a sequential number starting at 1 within a window partition. """ return _invoke_function("row_number") [docs]@since(1.6) def dense_rank() -> Column: """ Window function: returns the rank of rows within a window partition, without any gaps. The difference between rank and dense_rank is that dense_rank leaves no gaps in ranking sequence when there are ties. That is, if you were ranking a competition using dense_rank and had three people tie for second place, you would say that all three were in second place and that the next person came in third. Rank would give me sequential numbers, making the person that came in third place (after the ties) would register as coming in fifth. This is equivalent to the DENSE_RANK function in SQL. """ return _invoke_function("dense_rank") [docs]@since(1.6) def rank() -> Column: """ Window function: returns the rank of rows within a window partition. The difference between rank and dense_rank is that dense_rank leaves no gaps in ranking sequence when there are ties. That is, if you were ranking a competition using dense_rank and had three people tie for second place, you would say that all three were in second place and that the next person came in third. Rank would give me sequential numbers, making the person that came in third place (after the ties) would register as coming in fifth. This is equivalent to the RANK function in SQL. """ return _invoke_function("rank") [docs]@since(1.6) def cume_dist() -> Column: """ Window function: returns the cumulative distribution of values within a window partition, i.e. the fraction of rows that are below the current row. """ return _invoke_function("cume_dist") [docs]@since(1.6) def percent_rank() -> Column: """ Window function: returns the relative rank (i.e. percentile) of rows within a window partition. """ return _invoke_function("percent_rank") [docs]@since(1.3) def approxCountDistinct(col: "ColumnOrName", rsd: Optional[float] = None) -> Column: """ .. deprecated:: 2.1.0 Use :func:`approx_count_distinct` instead. """ warnings.warn("Deprecated in 2.1, use approx_count_distinct instead.", FutureWarning) return approx_count_distinct(col, rsd) [docs]def approx_count_distinct(col: "ColumnOrName", rsd: Optional[float] = None) -> Column: """Aggregate function: returns a new :class:`~pyspark.sql.Column` for approximate distinct count of column `col`. .. versionadded:: 2.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str rsd : float, optional maximum relative standard deviation allowed (default = 0.05). For rsd < 0.01, it is more efficient to use :func:`count_distinct` Examples -------- >>> df.agg(approx_count_distinct(df.age).alias('distinct_ages')).collect() [Row(distinct_ages=2)] """ if rsd is None: return _invoke_function_over_columns("approx_count_distinct", col) else: return _invoke_function("approx_count_distinct", _to_java_column(col), rsd) [docs]@since(1.6) def broadcast(df: DataFrame) -> DataFrame: """Marks a DataFrame as small enough for use in broadcast joins.""" sc = SparkContext._active_spark_context assert sc is not None and sc._jvm is not None return DataFrame(sc._jvm.functions.broadcast(df._jdf), df.sparkSession) [docs]def coalesce(*cols: "ColumnOrName") -> Column: """Returns the first column that is not null. .. versionadded:: 1.4.0 Examples -------- >>> cDf = spark.createDataFrame([(None, None), (1, None), (None, 2)], ("a", "b")) >>> cDf.show() +----+----+ | a| b| +----+----+ |null|null| | 1|null| |null| 2| +----+----+ >>> cDf.select(coalesce(cDf["a"], cDf["b"])).show() +--------------+ |coalesce(a, b)| +--------------+ | null| | 1| | 2| +--------------+ >>> cDf.select('*', coalesce(cDf["a"], lit(0.0))).show() +----+----+----------------+ | a| b|coalesce(a, 0.0)| +----+----+----------------+ |null|null| 0.0| | 1|null| 1.0| |null| 2| 0.0| +----+----+----------------+ """ return _invoke_function_over_seq_of_columns("coalesce", cols) [docs]def corr(col1: "ColumnOrName", col2: "ColumnOrName") -> Column: """Returns a new :class:`~pyspark.sql.Column` for the Pearson Correlation Coefficient for ``col1`` and ``col2``. .. versionadded:: 1.6.0 Examples -------- >>> a = range(20) >>> b = [2 * x for x in range(20)] >>> df = spark.createDataFrame(zip(a, b), ["a", "b"]) >>> df.agg(corr("a", "b").alias('c')).collect() [Row(c=1.0)] """ return _invoke_function_over_columns("corr", col1, col2) [docs]def covar_pop(col1: "ColumnOrName", col2: "ColumnOrName") -> Column: """Returns a new :class:`~pyspark.sql.Column` for the population covariance of ``col1`` and ``col2``. .. versionadded:: 2.0.0 Examples -------- >>> a = [1] * 10 >>> b = [1] * 10 >>> df = spark.createDataFrame(zip(a, b), ["a", "b"]) >>> df.agg(covar_pop("a", "b").alias('c')).collect() [Row(c=0.0)] """ return _invoke_function_over_columns("covar_pop", col1, col2) [docs]def covar_samp(col1: "ColumnOrName", col2: "ColumnOrName") -> Column: """Returns a new :class:`~pyspark.sql.Column` for the sample covariance of ``col1`` and ``col2``. .. versionadded:: 2.0.0 Examples -------- >>> a = [1] * 10 >>> b = [1] * 10 >>> df = spark.createDataFrame(zip(a, b), ["a", "b"]) >>> df.agg(covar_samp("a", "b").alias('c')).collect() [Row(c=0.0)] """ return _invoke_function_over_columns("covar_samp", col1, col2) [docs]def countDistinct(col: "ColumnOrName", *cols: "ColumnOrName") -> Column: """Returns a new :class:`~pyspark.sql.Column` for distinct count of ``col`` or ``cols``. An alias of :func:`count_distinct`, and it is encouraged to use :func:`count_distinct` directly. .. versionadded:: 1.3.0 """ return count_distinct(col, *cols) [docs]def count_distinct(col: "ColumnOrName", *cols: "ColumnOrName") -> Column: """Returns a new :class:`Column` for distinct count of ``col`` or ``cols``. .. versionadded:: 3.2.0 Examples -------- >>> df.agg(count_distinct(df.age, df.name).alias('c')).collect() [Row(c=2)] >>> df.agg(count_distinct("age", "name").alias('c')).collect() [Row(c=2)] """ sc = SparkContext._active_spark_context assert sc is not None and sc._jvm is not None return _invoke_function( "count_distinct", _to_java_column(col), _to_seq(sc, cols, _to_java_column) ) [docs]def first(col: "ColumnOrName", ignorenulls: bool = False) -> Column: """Aggregate function: returns the first value in a group. The function by default returns the first values it sees. It will return the first non-null value it sees when ignoreNulls is set to true. If all values are null, then null is returned. .. versionadded:: 1.3.0 Notes ----- The function is non-deterministic because its results depends on the order of the rows which may be non-deterministic after a shuffle. """ return _invoke_function("first", _to_java_column(col), ignorenulls) [docs]def grouping(col: "ColumnOrName") -> Column: """ Aggregate function: indicates whether a specified column in a GROUP BY list is aggregated or not, returns 1 for aggregated or 0 for not aggregated in the result set. .. versionadded:: 2.0.0 Examples -------- >>> df.cube("name").agg(grouping("name"), sum("age")).orderBy("name").show() +-----+--------------+--------+ | name|grouping(name)|sum(age)| +-----+--------------+--------+ | null| 1| 7| |Alice| 0| 2| | Bob| 0| 5| +-----+--------------+--------+ """ return _invoke_function_over_columns("grouping", col) [docs]def grouping_id(*cols: "ColumnOrName") -> Column: """ Aggregate function: returns the level of grouping, equals to (grouping(c1) << (n-1)) + (grouping(c2) << (n-2)) + ... + grouping(cn) .. versionadded:: 2.0.0 Notes ----- The list of columns should match with grouping columns exactly, or empty (means all the grouping columns). Examples -------- >>> df.cube("name").agg(grouping_id(), sum("age")).orderBy("name").show() +-----+-------------+--------+ | name|grouping_id()|sum(age)| +-----+-------------+--------+ | null| 1| 7| |Alice| 0| 2| | Bob| 0| 5| +-----+-------------+--------+ """ return _invoke_function_over_seq_of_columns("grouping_id", cols) [docs]@since(1.6) def input_file_name() -> Column: """Creates a string column for the file name of the current Spark task.""" return _invoke_function("input_file_name") [docs]def isnan(col: "ColumnOrName") -> Column: """An expression that returns true iff the column is NaN. .. versionadded:: 1.6.0 Examples -------- >>> df = spark.createDataFrame([(1.0, float('nan')), (float('nan'), 2.0)], ("a", "b")) >>> df.select(isnan("a").alias("r1"), isnan(df.a).alias("r2")).collect() [Row(r1=False, r2=False), Row(r1=True, r2=True)] """ return _invoke_function_over_columns("isnan", col) [docs]def isnull(col: "ColumnOrName") -> Column: """An expression that returns true iff the column is null. .. versionadded:: 1.6.0 Examples -------- >>> df = spark.createDataFrame([(1, None), (None, 2)], ("a", "b")) >>> df.select(isnull("a").alias("r1"), isnull(df.a).alias("r2")).collect() [Row(r1=False, r2=False), Row(r1=True, r2=True)] """ return _invoke_function_over_columns("isnull", col) [docs]def last(col: "ColumnOrName", ignorenulls: bool = False) -> Column: """Aggregate function: returns the last value in a group. The function by default returns the last values it sees. It will return the last non-null value it sees when ignoreNulls is set to true. If all values are null, then null is returned. .. versionadded:: 1.3.0 Notes ----- The function is non-deterministic because its results depends on the order of the rows which may be non-deterministic after a shuffle. """ return _invoke_function("last", _to_java_column(col), ignorenulls) [docs]def monotonically_increasing_id() -> Column: """A column that generates monotonically increasing 64-bit integers. The generated ID is guaranteed to be monotonically increasing and unique, but not consecutive. The current implementation puts the partition ID in the upper 31 bits, and the record number within each partition in the lower 33 bits. The assumption is that the data frame has less than 1 billion partitions, and each partition has less than 8 billion records. .. versionadded:: 1.6.0 Notes ----- The function is non-deterministic because its result depends on partition IDs. As an example, consider a :class:`DataFrame` with two partitions, each with 3 records. This expression would return the following IDs: 0, 1, 2, 8589934592 (1L << 33), 8589934593, 8589934594. >>> df0 = sc.parallelize(range(2), 2).mapPartitions(lambda x: [(1,), (2,), (3,)]).toDF(['col1']) >>> df0.select(monotonically_increasing_id().alias('id')).collect() [Row(id=0), Row(id=1), Row(id=2), Row(id=8589934592), Row(id=8589934593), Row(id=8589934594)] """ return _invoke_function("monotonically_increasing_id") [docs]def nanvl(col1: "ColumnOrName", col2: "ColumnOrName") -> Column: """Returns col1 if it is not NaN, or col2 if col1 is NaN. Both inputs should be floating point columns (:class:`DoubleType` or :class:`FloatType`). .. versionadded:: 1.6.0 Examples -------- >>> df = spark.createDataFrame([(1.0, float('nan')), (float('nan'), 2.0)], ("a", "b")) >>> df.select(nanvl("a", "b").alias("r1"), nanvl(df.a, df.b).alias("r2")).collect() [Row(r1=1.0, r2=1.0), Row(r1=2.0, r2=2.0)] """ return _invoke_function_over_columns("nanvl", col1, col2) [docs]def percentile_approx( col: "ColumnOrName", percentage: Union[Column, float, List[float], Tuple[float]], accuracy: Union[Column, float] = 10000, ) -> Column: """Returns the approximate `percentile` of the numeric column `col` which is the smallest value in the ordered `col` values (sorted from least to greatest) such that no more than `percentage` of `col` values is less than the value or equal to that value. The value of percentage must be between 0.0 and 1.0. The accuracy parameter (default: 10000) is a positive numeric literal which controls approximation accuracy at the cost of memory. Higher value of accuracy yields better accuracy, 1.0/accuracy is the relative error of the approximation. When percentage is an array, each value of the percentage array must be between 0.0 and 1.0. In this case, returns the approximate percentile array of column col at the given percentage array. .. versionadded:: 3.1.0 Examples -------- >>> key = (col("id") % 3).alias("key") >>> value = (randn(42) + key * 10).alias("value") >>> df = spark.range(0, 1000, 1, 1).select(key, value) >>> df.select( ... percentile_approx("value", [0.25, 0.5, 0.75], 1000000).alias("quantiles") ... ).printSchema() root |-- quantiles: array (nullable = true) | |-- element: double (containsNull = false) >>> df.groupBy("key").agg( ... percentile_approx("value", 0.5, lit(1000000)).alias("median") ... ).printSchema() root |-- key: long (nullable = true) |-- median: double (nullable = true) """ sc = SparkContext._active_spark_context assert sc is not None and sc._jvm is not None if isinstance(percentage, (list, tuple)): # A local list percentage = _invoke_function( "array", _to_seq(sc, [_create_column_from_literal(x) for x in percentage]) )._jc elif isinstance(percentage, Column): # Already a Column percentage = _to_java_column(percentage) else: # Probably scalar percentage = _create_column_from_literal(percentage) accuracy = ( _to_java_column(accuracy) if isinstance(accuracy, Column) else _create_column_from_literal(accuracy) ) return _invoke_function("percentile_approx", _to_java_column(col), percentage, accuracy) [docs]def rand(seed: Optional[int] = None) -> Column: """Generates a random column with independent and identically distributed (i.i.d.) samples uniformly distributed in [0.0, 1.0). .. versionadded:: 1.4.0 Notes ----- The function is non-deterministic in general case. Examples -------- >>> df.withColumn('rand', rand(seed=42) * 3).collect() [Row(age=2, name='Alice', rand=2.4052597283576684), Row(age=5, name='Bob', rand=2.3913904055683974)] """ if seed is not None: return _invoke_function("rand", seed) else: return _invoke_function("rand") [docs]def randn(seed: Optional[int] = None) -> Column: """Generates a column with independent and identically distributed (i.i.d.) samples from the standard normal distribution. .. versionadded:: 1.4.0 Notes ----- The function is non-deterministic in general case. Examples -------- >>> df.withColumn('randn', randn(seed=42)).collect() [Row(age=2, name='Alice', randn=1.1027054481455365), Row(age=5, name='Bob', randn=0.7400395449950132)] """ if seed is not None: return _invoke_function("randn", seed) else: return _invoke_function("randn") [docs]def round(col: "ColumnOrName", scale: int = 0) -> Column: """ Round the given value to `scale` decimal places using HALF_UP rounding mode if `scale` >= 0 or at integral part when `scale` < 0. .. versionadded:: 1.5.0 Examples -------- >>> spark.createDataFrame([(2.5,)], ['a']).select(round('a', 0).alias('r')).collect() [Row(r=3.0)] """ return _invoke_function("round", _to_java_column(col), scale) [docs]def bround(col: "ColumnOrName", scale: int = 0) -> Column: """ Round the given value to `scale` decimal places using HALF_EVEN rounding mode if `scale` >= 0 or at integral part when `scale` < 0. .. versionadded:: 2.0.0 Examples -------- >>> spark.createDataFrame([(2.5,)], ['a']).select(bround('a', 0).alias('r')).collect() [Row(r=2.0)] """ return _invoke_function("bround", _to_java_column(col), scale) def shiftLeft(col: "ColumnOrName", numBits: int) -> Column: """Shift the given value numBits left. .. versionadded:: 1.5.0 .. deprecated:: 3.2.0 Use :func:`shiftleft` instead. """ warnings.warn("Deprecated in 3.2, use shiftleft instead.", FutureWarning) return shiftleft(col, numBits) [docs]def shiftleft(col: "ColumnOrName", numBits: int) -> Column: """Shift the given value numBits left. .. versionadded:: 3.2.0 Examples -------- >>> spark.createDataFrame([(21,)], ['a']).select(shiftleft('a', 1).alias('r')).collect() [Row(r=42)] """ return _invoke_function("shiftleft", _to_java_column(col), numBits) def shiftRight(col: "ColumnOrName", numBits: int) -> Column: """(Signed) shift the given value numBits right. .. versionadded:: 1.5.0 .. deprecated:: 3.2.0 Use :func:`shiftright` instead. """ warnings.warn("Deprecated in 3.2, use shiftright instead.", FutureWarning) return shiftright(col, numBits) [docs]def shiftright(col: "ColumnOrName", numBits: int) -> Column: """(Signed) shift the given value numBits right. .. versionadded:: 3.2.0 Examples -------- >>> spark.createDataFrame([(42,)], ['a']).select(shiftright('a', 1).alias('r')).collect() [Row(r=21)] """ return _invoke_function("shiftright", _to_java_column(col), numBits) def shiftRightUnsigned(col: "ColumnOrName", numBits: int) -> Column: """Unsigned shift the given value numBits right. .. versionadded:: 1.5.0 .. deprecated:: 3.2.0 Use :func:`shiftrightunsigned` instead. """ warnings.warn("Deprecated in 3.2, use shiftrightunsigned instead.", FutureWarning) return shiftrightunsigned(col, numBits) [docs]def shiftrightunsigned(col: "ColumnOrName", numBits: int) -> Column: """Unsigned shift the given value numBits right. .. versionadded:: 3.2.0 Examples -------- >>> df = spark.createDataFrame([(-42,)], ['a']) >>> df.select(shiftrightunsigned('a', 1).alias('r')).collect() [Row(r=9223372036854775787)] """ return _invoke_function("shiftrightunsigned", _to_java_column(col), numBits) [docs]def spark_partition_id() -> Column: """A column for partition ID. .. versionadded:: 1.6.0 Notes ----- This is non deterministic because it depends on data partitioning and task scheduling. Examples -------- >>> df.repartition(1).select(spark_partition_id().alias("pid")).collect() [Row(pid=0), Row(pid=0)] """ return _invoke_function("spark_partition_id") [docs]def expr(str: str) -> Column: """Parses the expression string into the column that it represents .. versionadded:: 1.5.0 Examples -------- >>> df.select(expr("length(name)")).collect() [Row(length(name)=5), Row(length(name)=3)] """ return _invoke_function("expr", str) @overload def struct(*cols: "ColumnOrName") -> Column: ... @overload def struct(__cols: Union[List["ColumnOrName_"], Tuple["ColumnOrName_", ...]]) -> Column: ... [docs]def struct( *cols: Union["ColumnOrName", Union[List["ColumnOrName_"], Tuple["ColumnOrName_", ...]]] ) -> Column: """Creates a new struct column. .. versionadded:: 1.4.0 Parameters ---------- cols : list, set, str or :class:`~pyspark.sql.Column` column names or :class:`~pyspark.sql.Column`\\s to contain in the output struct. Examples -------- >>> df.select(struct('age', 'name').alias("struct")).collect() [Row(struct=Row(age=2, name='Alice')), Row(struct=Row(age=5, name='Bob'))] >>> df.select(struct([df.age, df.name]).alias("struct")).collect() [Row(struct=Row(age=2, name='Alice')), Row(struct=Row(age=5, name='Bob'))] """ if len(cols) == 1 and isinstance(cols[0], (list, set)): cols = cols[0] # type: ignore[assignment] return _invoke_function_over_seq_of_columns("struct", cols) # type: ignore[arg-type] [docs]def greatest(*cols: "ColumnOrName") -> Column: """ Returns the greatest value of the list of column names, skipping null values. This function takes at least 2 parameters. It will return null iff all parameters are null. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([(1, 4, 3)], ['a', 'b', 'c']) >>> df.select(greatest(df.a, df.b, df.c).alias("greatest")).collect() [Row(greatest=4)] """ if len(cols) < 2: raise ValueError("greatest should take at least two columns") return _invoke_function_over_seq_of_columns("greatest", cols) [docs]def least(*cols: "ColumnOrName") -> Column: """ Returns the least value of the list of column names, skipping null values. This function takes at least 2 parameters. It will return null iff all parameters are null. .. versionadded:: 1.5.0 Parameters ---------- cols : :class:`~pyspark.sql.Column` or str column names or columns to be compared Examples -------- >>> df = spark.createDataFrame([(1, 4, 3)], ['a', 'b', 'c']) >>> df.select(least(df.a, df.b, df.c).alias("least")).collect() [Row(least=1)] """ if len(cols) < 2: raise ValueError("least should take at least two columns") return _invoke_function_over_seq_of_columns("least", cols) [docs]def when(condition: Column, value: Any) -> Column: """Evaluates a list of conditions and returns one of multiple possible result expressions. If :func:`pyspark.sql.Column.otherwise` is not invoked, None is returned for unmatched conditions. .. versionadded:: 1.4.0 Parameters ---------- condition : :class:`~pyspark.sql.Column` a boolean :class:`~pyspark.sql.Column` expression. value : a literal value, or a :class:`~pyspark.sql.Column` expression. Examples -------- >>> df.select(when(df['age'] == 2, 3).otherwise(4).alias("age")).collect() [Row(age=3), Row(age=4)] >>> df.select(when(df.age == 2, df.age + 1).alias("age")).collect() [Row(age=3), Row(age=None)] """ # Explicitly not using ColumnOrName type here to make reading condition less opaque if not isinstance(condition, Column): raise TypeError("condition should be a Column") v = value._jc if isinstance(value, Column) else value return _invoke_function("when", condition._jc, v) @overload # type: ignore[no-redef] def log(arg1: "ColumnOrName") -> Column: ... @overload def log(arg1: float, arg2: "ColumnOrName") -> Column: ... [docs]def log(arg1: Union["ColumnOrName", float], arg2: Optional["ColumnOrName"] = None) -> Column: """Returns the first argument-based logarithm of the second argument. If there is only one argument, then this takes the natural logarithm of the argument. .. versionadded:: 1.5.0 Examples -------- >>> df.select(log(10.0, df.age).alias('ten')).rdd.map(lambda l: str(l.ten)[:7]).collect() ['0.30102', '0.69897'] >>> df.select(log(df.age).alias('e')).rdd.map(lambda l: str(l.e)[:7]).collect() ['0.69314', '1.60943'] """ if arg2 is None: return _invoke_function_over_columns("log", cast("ColumnOrName", arg1)) else: return _invoke_function("log", arg1, _to_java_column(arg2)) [docs]def log2(col: "ColumnOrName") -> Column: """Returns the base-2 logarithm of the argument. .. versionadded:: 1.5.0 Examples -------- >>> spark.createDataFrame([(4,)], ['a']).select(log2('a').alias('log2')).collect() [Row(log2=2.0)] """ return _invoke_function_over_columns("log2", col) [docs]def conv(col: "ColumnOrName", fromBase: int, toBase: int) -> Column: """ Convert a number in a string column from one base to another. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([("010101",)], ['n']) >>> df.select(conv(df.n, 2, 16).alias('hex')).collect() [Row(hex='15')] """ return _invoke_function("conv", _to_java_column(col), fromBase, toBase) [docs]def factorial(col: "ColumnOrName") -> Column: """ Computes the factorial of the given value. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([(5,)], ['n']) >>> df.select(factorial(df.n).alias('f')).collect() [Row(f=120)] """ return _invoke_function_over_columns("factorial", col) # --------------- Window functions ------------------------ [docs]def lag(col: "ColumnOrName", offset: int = 1, default: Optional[Any] = None) -> Column: """ Window function: returns the value that is `offset` rows before the current row, and `default` if there is less than `offset` rows before the current row. For example, an `offset` of one will return the previous row at any given point in the window partition. This is equivalent to the LAG function in SQL. .. versionadded:: 1.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression offset : int, optional number of row to extend default : optional default value """ return _invoke_function("lag", _to_java_column(col), offset, default) [docs]def lead(col: "ColumnOrName", offset: int = 1, default: Optional[Any] = None) -> Column: """ Window function: returns the value that is `offset` rows after the current row, and `default` if there is less than `offset` rows after the current row. For example, an `offset` of one will return the next row at any given point in the window partition. This is equivalent to the LEAD function in SQL. .. versionadded:: 1.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression offset : int, optional number of row to extend default : optional default value """ return _invoke_function("lead", _to_java_column(col), offset, default) [docs]def nth_value(col: "ColumnOrName", offset: int, ignoreNulls: Optional[bool] = False) -> Column: """ Window function: returns the value that is the `offset`\\th row of the window frame (counting from 1), and `null` if the size of window frame is less than `offset` rows. It will return the `offset`\\th non-null value it sees when `ignoreNulls` is set to true. If all values are null, then null is returned. This is equivalent to the nth_value function in SQL. .. versionadded:: 3.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression offset : int, optional number of row to use as the value ignoreNulls : bool, optional indicates the Nth value should skip null in the determination of which row to use """ return _invoke_function("nth_value", _to_java_column(col), offset, ignoreNulls) [docs]def ntile(n: int) -> Column: """ Window function: returns the ntile group id (from 1 to `n` inclusive) in an ordered window partition. For example, if `n` is 4, the first quarter of the rows will get value 1, the second quarter will get 2, the third quarter will get 3, and the last quarter will get 4. This is equivalent to the NTILE function in SQL. .. versionadded:: 1.4.0 Parameters ---------- n : int an integer """ return _invoke_function("ntile", int(n)) # ---------------------- Date/Timestamp functions ------------------------------ [docs]@since(1.5) def current_date() -> Column: """ Returns the current date at the start of query evaluation as a :class:`DateType` column. All calls of current_date within the same query return the same value. """ return _invoke_function("current_date") [docs]def current_timestamp() -> Column: """ Returns the current timestamp at the start of query evaluation as a :class:`TimestampType` column. All calls of current_timestamp within the same query return the same value. """ return _invoke_function("current_timestamp") [docs]def date_format(date: "ColumnOrName", format: str) -> Column: """ Converts a date/timestamp/string to a value of string in the format specified by the date format given by the second argument. A pattern could be for instance `dd.MM.yyyy` and could return a string like '18.03.1993'. All pattern letters of `datetime pattern`_. can be used. .. _datetime pattern: https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html .. versionadded:: 1.5.0 Notes ----- Whenever possible, use specialized functions like `year`. Examples -------- >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(date_format('dt', 'MM/dd/yyy').alias('date')).collect() [Row(date='04/08/2015')] """ return _invoke_function("date_format", _to_java_column(date), format) [docs]def year(col: "ColumnOrName") -> Column: """ Extract the year of a given date as integer. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(year('dt').alias('year')).collect() [Row(year=2015)] """ return _invoke_function_over_columns("year", col) [docs]def quarter(col: "ColumnOrName") -> Column: """ Extract the quarter of a given date as integer. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(quarter('dt').alias('quarter')).collect() [Row(quarter=2)] """ return _invoke_function_over_columns("quarter", col) [docs]def month(col: "ColumnOrName") -> Column: """ Extract the month of a given date as integer. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(month('dt').alias('month')).collect() [Row(month=4)] """ return _invoke_function_over_columns("month", col) [docs]def dayofweek(col: "ColumnOrName") -> Column: """ Extract the day of the week of a given date as integer. Ranges from 1 for a Sunday through to 7 for a Saturday .. versionadded:: 2.3.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(dayofweek('dt').alias('day')).collect() [Row(day=4)] """ return _invoke_function_over_columns("dayofweek", col) [docs]def dayofmonth(col: "ColumnOrName") -> Column: """ Extract the day of the month of a given date as integer. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(dayofmonth('dt').alias('day')).collect() [Row(day=8)] """ return _invoke_function_over_columns("dayofmonth", col) [docs]def dayofyear(col: "ColumnOrName") -> Column: """ Extract the day of the year of a given date as integer. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(dayofyear('dt').alias('day')).collect() [Row(day=98)] """ return _invoke_function_over_columns("dayofyear", col) [docs]def hour(col: "ColumnOrName") -> Column: """ Extract the hours of a given date as integer. .. versionadded:: 1.5.0 Examples -------- >>> import datetime >>> df = spark.createDataFrame([(datetime.datetime(2015, 4, 8, 13, 8, 15),)], ['ts']) >>> df.select(hour('ts').alias('hour')).collect() [Row(hour=13)] """ return _invoke_function_over_columns("hour", col) [docs]def minute(col: "ColumnOrName") -> Column: """ Extract the minutes of a given date as integer. .. versionadded:: 1.5.0 Examples -------- >>> import datetime >>> df = spark.createDataFrame([(datetime.datetime(2015, 4, 8, 13, 8, 15),)], ['ts']) >>> df.select(minute('ts').alias('minute')).collect() [Row(minute=8)] """ return _invoke_function_over_columns("minute", col) [docs]def second(col: "ColumnOrName") -> Column: """ Extract the seconds of a given date as integer. .. versionadded:: 1.5.0 Examples -------- >>> import datetime >>> df = spark.createDataFrame([(datetime.datetime(2015, 4, 8, 13, 8, 15),)], ['ts']) >>> df.select(second('ts').alias('second')).collect() [Row(second=15)] """ return _invoke_function_over_columns("second", col) [docs]def weekofyear(col: "ColumnOrName") -> Column: """ Extract the week number of a given date as integer. A week is considered to start on a Monday and week 1 is the first week with more than 3 days, as defined by ISO 8601 .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(weekofyear(df.dt).alias('week')).collect() [Row(week=15)] """ return _invoke_function_over_columns("weekofyear", col) [docs]def make_date(year: "ColumnOrName", month: "ColumnOrName", day: "ColumnOrName") -> Column: """ Returns a column with a date built from the year, month and day columns. .. versionadded:: 3.3.0 Parameters ---------- year : :class:`~pyspark.sql.Column` or str The year to build the date month : :class:`~pyspark.sql.Column` or str The month to build the date day : :class:`~pyspark.sql.Column` or str The day to build the date Examples -------- >>> df = spark.createDataFrame([(2020, 6, 26)], ['Y', 'M', 'D']) >>> df.select(make_date(df.Y, df.M, df.D).alias("datefield")).collect() [Row(datefield=datetime.date(2020, 6, 26))] """ return _invoke_function_over_columns("make_date", year, month, day) [docs]def date_add(start: "ColumnOrName", days: Union["ColumnOrName", int]) -> Column: """ Returns the date that is `days` days after `start` .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08', 2,)], ['dt', 'add']) >>> df.select(date_add(df.dt, 1).alias('next_date')).collect() [Row(next_date=datetime.date(2015, 4, 9))] >>> df.select(date_add(df.dt, df.add.cast('integer')).alias('next_date')).collect() [Row(next_date=datetime.date(2015, 4, 10))] """ days = lit(days) if isinstance(days, int) else days return _invoke_function_over_columns("date_add", start, days) [docs]def date_sub(start: "ColumnOrName", days: Union["ColumnOrName", int]) -> Column: """ Returns the date that is `days` days before `start` .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08', 2,)], ['dt', 'sub']) >>> df.select(date_sub(df.dt, 1).alias('prev_date')).collect() [Row(prev_date=datetime.date(2015, 4, 7))] >>> df.select(date_sub(df.dt, df.sub.cast('integer')).alias('prev_date')).collect() [Row(prev_date=datetime.date(2015, 4, 6))] """ days = lit(days) if isinstance(days, int) else days return _invoke_function_over_columns("date_sub", start, days) [docs]def datediff(end: "ColumnOrName", start: "ColumnOrName") -> Column: """ Returns the number of days from `start` to `end`. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08','2015-05-10')], ['d1', 'd2']) >>> df.select(datediff(df.d2, df.d1).alias('diff')).collect() [Row(diff=32)] """ return _invoke_function_over_columns("datediff", end, start) [docs]def add_months(start: "ColumnOrName", months: Union["ColumnOrName", int]) -> Column: """ Returns the date that is `months` months after `start` .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08', 2)], ['dt', 'add']) >>> df.select(add_months(df.dt, 1).alias('next_month')).collect() [Row(next_month=datetime.date(2015, 5, 8))] >>> df.select(add_months(df.dt, df.add.cast('integer')).alias('next_month')).collect() [Row(next_month=datetime.date(2015, 6, 8))] """ months = lit(months) if isinstance(months, int) else months return _invoke_function_over_columns("add_months", start, months) [docs]def months_between(date1: "ColumnOrName", date2: "ColumnOrName", roundOff: bool = True) -> Column: """ Returns number of months between dates date1 and date2. If date1 is later than date2, then the result is positive. A whole number is returned if both inputs have the same day of month or both are the last day of their respective months. Otherwise, the difference is calculated assuming 31 days per month. The result is rounded off to 8 digits unless `roundOff` is set to `False`. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('1997-02-28 10:30:00', '1996-10-30')], ['date1', 'date2']) >>> df.select(months_between(df.date1, df.date2).alias('months')).collect() [Row(months=3.94959677)] >>> df.select(months_between(df.date1, df.date2, False).alias('months')).collect() [Row(months=3.9495967741935485)] """ return _invoke_function( "months_between", _to_java_column(date1), _to_java_column(date2), roundOff ) [docs]def to_date(col: "ColumnOrName", format: Optional[str] = None) -> Column: """Converts a :class:`~pyspark.sql.Column` into :class:`pyspark.sql.types.DateType` using the optionally specified format. Specify formats according to `datetime pattern`_. By default, it follows casting rules to :class:`pyspark.sql.types.DateType` if the format is omitted. Equivalent to ``col.cast("date")``. .. _datetime pattern: https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html .. versionadded:: 2.2.0 Examples -------- >>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t']) >>> df.select(to_date(df.t).alias('date')).collect() [Row(date=datetime.date(1997, 2, 28))] >>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t']) >>> df.select(to_date(df.t, 'yyyy-MM-dd HH:mm:ss').alias('date')).collect() [Row(date=datetime.date(1997, 2, 28))] """ if format is None: return _invoke_function_over_columns("to_date", col) else: return _invoke_function("to_date", _to_java_column(col), format) @overload def to_timestamp(col: "ColumnOrName") -> Column: ... @overload def to_timestamp(col: "ColumnOrName", format: str) -> Column: ... [docs]def to_timestamp(col: "ColumnOrName", format: Optional[str] = None) -> Column: """Converts a :class:`~pyspark.sql.Column` into :class:`pyspark.sql.types.TimestampType` using the optionally specified format. Specify formats according to `datetime pattern`_. By default, it follows casting rules to :class:`pyspark.sql.types.TimestampType` if the format is omitted. Equivalent to ``col.cast("timestamp")``. .. _datetime pattern: https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html .. versionadded:: 2.2.0 Examples -------- >>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t']) >>> df.select(to_timestamp(df.t).alias('dt')).collect() [Row(dt=datetime.datetime(1997, 2, 28, 10, 30))] >>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t']) >>> df.select(to_timestamp(df.t, 'yyyy-MM-dd HH:mm:ss').alias('dt')).collect() [Row(dt=datetime.datetime(1997, 2, 28, 10, 30))] """ if format is None: return _invoke_function_over_columns("to_timestamp", col) else: return _invoke_function("to_timestamp", _to_java_column(col), format) [docs]def trunc(date: "ColumnOrName", format: str) -> Column: """ Returns date truncated to the unit specified by the format. .. versionadded:: 1.5.0 Parameters ---------- date : :class:`~pyspark.sql.Column` or str format : str 'year', 'yyyy', 'yy' to truncate by year, or 'month', 'mon', 'mm' to truncate by month Other options are: 'week', 'quarter' Examples -------- >>> df = spark.createDataFrame([('1997-02-28',)], ['d']) >>> df.select(trunc(df.d, 'year').alias('year')).collect() [Row(year=datetime.date(1997, 1, 1))] >>> df.select(trunc(df.d, 'mon').alias('month')).collect() [Row(month=datetime.date(1997, 2, 1))] """ return _invoke_function("trunc", _to_java_column(date), format) [docs]def date_trunc(format: str, timestamp: "ColumnOrName") -> Column: """ Returns timestamp truncated to the unit specified by the format. .. versionadded:: 2.3.0 Parameters ---------- format : str 'year', 'yyyy', 'yy' to truncate by year, 'month', 'mon', 'mm' to truncate by month, 'day', 'dd' to truncate by day, Other options are: 'microsecond', 'millisecond', 'second', 'minute', 'hour', 'week', 'quarter' timestamp : :class:`~pyspark.sql.Column` or str Examples -------- >>> df = spark.createDataFrame([('1997-02-28 05:02:11',)], ['t']) >>> df.select(date_trunc('year', df.t).alias('year')).collect() [Row(year=datetime.datetime(1997, 1, 1, 0, 0))] >>> df.select(date_trunc('mon', df.t).alias('month')).collect() [Row(month=datetime.datetime(1997, 2, 1, 0, 0))] """ return _invoke_function("date_trunc", format, _to_java_column(timestamp)) [docs]def next_day(date: "ColumnOrName", dayOfWeek: str) -> Column: """ Returns the first date which is later than the value of the date column. Day of the week parameter is case insensitive, and accepts: "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun". .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-07-27',)], ['d']) >>> df.select(next_day(df.d, 'Sun').alias('date')).collect() [Row(date=datetime.date(2015, 8, 2))] """ return _invoke_function("next_day", _to_java_column(date), dayOfWeek) [docs]def last_day(date: "ColumnOrName") -> Column: """ Returns the last day of the month which the given date belongs to. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('1997-02-10',)], ['d']) >>> df.select(last_day(df.d).alias('date')).collect() [Row(date=datetime.date(1997, 2, 28))] """ return _invoke_function("last_day", _to_java_column(date)) [docs]def from_unixtime(timestamp: "ColumnOrName", format: str = "yyyy-MM-dd HH:mm:ss") -> Column: """ Converts the number of seconds from unix epoch (1970-01-01 00:00:00 UTC) to a string representing the timestamp of that moment in the current system time zone in the given format. .. versionadded:: 1.5.0 Examples -------- >>> spark.conf.set("spark.sql.session.timeZone", "America/Los_Angeles") >>> time_df = spark.createDataFrame([(1428476400,)], ['unix_time']) >>> time_df.select(from_unixtime('unix_time').alias('ts')).collect() [Row(ts='2015-04-08 00:00:00')] >>> spark.conf.unset("spark.sql.session.timeZone") """ return _invoke_function("from_unixtime", _to_java_column(timestamp), format) @overload def unix_timestamp(timestamp: "ColumnOrName", format: str = ...) -> Column: ... @overload def unix_timestamp() -> Column: ... [docs]def unix_timestamp( timestamp: Optional["ColumnOrName"] = None, format: str = "yyyy-MM-dd HH:mm:ss" ) -> Column: """ Convert time string with given pattern ('yyyy-MM-dd HH:mm:ss', by default) to Unix time stamp (in seconds), using the default timezone and the default locale, return null if fail. if `timestamp` is None, then it returns current timestamp. .. versionadded:: 1.5.0 Examples -------- >>> spark.conf.set("spark.sql.session.timeZone", "America/Los_Angeles") >>> time_df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> time_df.select(unix_timestamp('dt', 'yyyy-MM-dd').alias('unix_time')).collect() [Row(unix_time=1428476400)] >>> spark.conf.unset("spark.sql.session.timeZone") """ if timestamp is None: return _invoke_function("unix_timestamp") return _invoke_function("unix_timestamp", _to_java_column(timestamp), format) [docs]def from_utc_timestamp(timestamp: "ColumnOrName", tz: "ColumnOrName") -> Column: """ This is a common function for databases supporting TIMESTAMP WITHOUT TIMEZONE. This function takes a timestamp which is timezone-agnostic, and interprets it as a timestamp in UTC, and renders that timestamp as a timestamp in the given time zone. However, timestamp in Spark represents number of microseconds from the Unix epoch, which is not timezone-agnostic. So in Spark this function just shift the timestamp value from UTC timezone to the given timezone. This function may return confusing result if the input is a string with timezone, e.g. '2018-03-13T06:18:23+00:00'. The reason is that, Spark firstly cast the string to timestamp according to the timezone in the string, and finally display the result by converting the timestamp to string according to the session local timezone. .. versionadded:: 1.5.0 Parameters ---------- timestamp : :class:`~pyspark.sql.Column` or str the column that contains timestamps tz : :class:`~pyspark.sql.Column` or str A string detailing the time zone ID that the input should be adjusted to. It should be in the format of either region-based zone IDs or zone offsets. Region IDs must have the form 'area/city', such as 'America/Los_Angeles'. Zone offsets must be in the format '(+|-)HH:mm', for example '-08:00' or '+01:00'. Also 'UTC' and 'Z' are supported as aliases of '+00:00'. Other short names are not recommended to use because they can be ambiguous. .. versionchanged:: 2.4 `tz` can take a :class:`~pyspark.sql.Column` containing timezone ID strings. Examples -------- >>> df = spark.createDataFrame([('1997-02-28 10:30:00', 'JST')], ['ts', 'tz']) >>> df.select(from_utc_timestamp(df.ts, "PST").alias('local_time')).collect() [Row(local_time=datetime.datetime(1997, 2, 28, 2, 30))] >>> df.select(from_utc_timestamp(df.ts, df.tz).alias('local_time')).collect() [Row(local_time=datetime.datetime(1997, 2, 28, 19, 30))] """ if isinstance(tz, Column): tz = _to_java_column(tz) return _invoke_function("from_utc_timestamp", _to_java_column(timestamp), tz) [docs]def to_utc_timestamp(timestamp: "ColumnOrName", tz: "ColumnOrName") -> Column: """ This is a common function for databases supporting TIMESTAMP WITHOUT TIMEZONE. This function takes a timestamp which is timezone-agnostic, and interprets it as a timestamp in the given timezone, and renders that timestamp as a timestamp in UTC. However, timestamp in Spark represents number of microseconds from the Unix epoch, which is not timezone-agnostic. So in Spark this function just shift the timestamp value from the given timezone to UTC timezone. This function may return confusing result if the input is a string with timezone, e.g. '2018-03-13T06:18:23+00:00'. The reason is that, Spark firstly cast the string to timestamp according to the timezone in the string, and finally display the result by converting the timestamp to string according to the session local timezone. .. versionadded:: 1.5.0 Parameters ---------- timestamp : :class:`~pyspark.sql.Column` or str the column that contains timestamps tz : :class:`~pyspark.sql.Column` or str A string detailing the time zone ID that the input should be adjusted to. It should be in the format of either region-based zone IDs or zone offsets. Region IDs must have the form 'area/city', such as 'America/Los_Angeles'. Zone offsets must be in the format '(+|-)HH:mm', for example '-08:00' or '+01:00'. Also 'UTC' and 'Z' are upported as aliases of '+00:00'. Other short names are not recommended to use because they can be ambiguous. .. versionchanged:: 2.4.0 `tz` can take a :class:`~pyspark.sql.Column` containing timezone ID strings. Examples -------- >>> df = spark.createDataFrame([('1997-02-28 10:30:00', 'JST')], ['ts', 'tz']) >>> df.select(to_utc_timestamp(df.ts, "PST").alias('utc_time')).collect() [Row(utc_time=datetime.datetime(1997, 2, 28, 18, 30))] >>> df.select(to_utc_timestamp(df.ts, df.tz).alias('utc_time')).collect() [Row(utc_time=datetime.datetime(1997, 2, 28, 1, 30))] """ if isinstance(tz, Column): tz = _to_java_column(tz) return _invoke_function("to_utc_timestamp", _to_java_column(timestamp), tz) [docs]def timestamp_seconds(col: "ColumnOrName") -> Column: """ .. versionadded:: 3.1.0 Examples -------- >>> from pyspark.sql.functions import timestamp_seconds >>> spark.conf.set("spark.sql.session.timeZone", "America/Los_Angeles") >>> time_df = spark.createDataFrame([(1230219000,)], ['unix_time']) >>> time_df.select(timestamp_seconds(time_df.unix_time).alias('ts')).show() +-------------------+ | ts| +-------------------+ |2008-12-25 07:30:00| +-------------------+ >>> spark.conf.unset("spark.sql.session.timeZone") """ return _invoke_function_over_columns("timestamp_seconds", col) [docs]def window( timeColumn: "ColumnOrName", windowDuration: str, slideDuration: Optional[str] = None, startTime: Optional[str] = None, ) -> Column: """Bucketize rows into one or more time windows given a timestamp specifying column. Window starts are inclusive but the window ends are exclusive, e.g. 12:05 will be in the window [12:05,12:10) but not in [12:00,12:05). Windows can support microsecond precision. Windows in the order of months are not supported. The time column must be of :class:`pyspark.sql.types.TimestampType`. Durations are provided as strings, e.g. '1 second', '1 day 12 hours', '2 minutes'. Valid interval strings are 'week', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond'. If the ``slideDuration`` is not provided, the windows will be tumbling windows. The startTime is the offset with respect to 1970-01-01 00:00:00 UTC with which to start window intervals. For example, in order to have hourly tumbling windows that start 15 minutes past the hour, e.g. 12:15-13:15, 13:15-14:15... provide `startTime` as `15 minutes`. The output column will be a struct called 'window' by default with the nested columns 'start' and 'end', where 'start' and 'end' will be of :class:`pyspark.sql.types.TimestampType`. .. versionadded:: 2.0.0 Parameters ---------- timeColumn : :class:`~pyspark.sql.Column` The column or the expression to use as the timestamp for windowing by time. The time column must be of TimestampType. windowDuration : str A string specifying the width of the window, e.g. `10 minutes`, `1 second`. Check `org.apache.spark.unsafe.types.CalendarInterval` for valid duration identifiers. Note that the duration is a fixed length of time, and does not vary over time according to a calendar. For example, `1 day` always means 86,400,000 milliseconds, not a calendar day. slideDuration : str, optional A new window will be generated every `slideDuration`. Must be less than or equal to the `windowDuration`. Check `org.apache.spark.unsafe.types.CalendarInterval` for valid duration identifiers. This duration is likewise absolute, and does not vary according to a calendar. startTime : str, optional The offset with respect to 1970-01-01 00:00:00 UTC with which to start window intervals. For example, in order to have hourly tumbling windows that start 15 minutes past the hour, e.g. 12:15-13:15, 13:15-14:15... provide `startTime` as `15 minutes`. Examples -------- >>> import datetime >>> df = spark.createDataFrame( ... [(datetime.datetime(2016, 3, 11, 9, 0, 7), 1)], ... ).toDF("date", "val") >>> w = df.groupBy(window("date", "5 seconds")).agg(sum("val").alias("sum")) >>> w.select(w.window.start.cast("string").alias("start"), ... w.window.end.cast("string").alias("end"), "sum").collect() [Row(start='2016-03-11 09:00:05', end='2016-03-11 09:00:10', sum=1)] """ def check_string_field(field, fieldName): # type: ignore[no-untyped-def] if not field or type(field) is not str: raise TypeError("%s should be provided as a string" % fieldName) time_col = _to_java_column(timeColumn) check_string_field(windowDuration, "windowDuration") if slideDuration and startTime: check_string_field(slideDuration, "slideDuration") check_string_field(startTime, "startTime") return _invoke_function("window", time_col, windowDuration, slideDuration, startTime) elif slideDuration: check_string_field(slideDuration, "slideDuration") return _invoke_function("window", time_col, windowDuration, slideDuration) elif startTime: check_string_field(startTime, "startTime") return _invoke_function("window", time_col, windowDuration, windowDuration, startTime) else: return _invoke_function("window", time_col, windowDuration) [docs]def session_window(timeColumn: "ColumnOrName", gapDuration: Union[Column, str]) -> Column: """ Generates session window given a timestamp specifying column. Session window is one of dynamic windows, which means the length of window is varying according to the given inputs. The length of session window is defined as "the timestamp of latest input of the session + gap duration", so when the new inputs are bound to the current session window, the end time of session window can be expanded according to the new inputs. Windows can support microsecond precision. Windows in the order of months are not supported. For a streaming query, you may use the function `current_timestamp` to generate windows on processing time. gapDuration is provided as strings, e.g. '1 second', '1 day 12 hours', '2 minutes'. Valid interval strings are 'week', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond'. It could also be a Column which can be evaluated to gap duration dynamically based on the input row. The output column will be a struct called 'session_window' by default with the nested columns 'start' and 'end', where 'start' and 'end' will be of :class:`pyspark.sql.types.TimestampType`. .. versionadded:: 3.2.0 Parameters ---------- timeColumn : :class:`~pyspark.sql.Column` or str The column name or column to use as the timestamp for windowing by time. The time column must be of TimestampType. gapDuration : :class:`~pyspark.sql.Column` or str A Python string literal or column specifying the timeout of the session. It could be static value, e.g. `10 minutes`, `1 second`, or an expression/UDF that specifies gap duration dynamically based on the input row. Examples -------- >>> df = spark.createDataFrame([("2016-03-11 09:00:07", 1)]).toDF("date", "val") >>> w = df.groupBy(session_window("date", "5 seconds")).agg(sum("val").alias("sum")) >>> w.select(w.session_window.start.cast("string").alias("start"), ... w.session_window.end.cast("string").alias("end"), "sum").collect() [Row(start='2016-03-11 09:00:07', end='2016-03-11 09:00:12', sum=1)] >>> w = df.groupBy(session_window("date", lit("5 seconds"))).agg(sum("val").alias("sum")) >>> w.select(w.session_window.start.cast("string").alias("start"), ... w.session_window.end.cast("string").alias("end"), "sum").collect() [Row(start='2016-03-11 09:00:07', end='2016-03-11 09:00:12', sum=1)] """ def check_field(field: Union[Column, str], fieldName: str) -> None: if field is None or not isinstance(field, (str, Column)): raise TypeError("%s should be provided as a string or Column" % fieldName) time_col = _to_java_column(timeColumn) check_field(gapDuration, "gapDuration") gap_duration = gapDuration if isinstance(gapDuration, str) else _to_java_column(gapDuration) return _invoke_function("session_window", time_col, gap_duration) # ---------------------------- misc functions ---------------------------------- [docs]def crc32(col: "ColumnOrName") -> Column: """ Calculates the cyclic redundancy check value (CRC32) of a binary column and returns the value as a bigint. .. versionadded:: 1.5.0 Examples -------- >>> spark.createDataFrame([('ABC',)], ['a']).select(crc32('a').alias('crc32')).collect() [Row(crc32=2743272264)] """ return _invoke_function_over_columns("crc32", col) [docs]def md5(col: "ColumnOrName") -> Column: """Calculates the MD5 digest and returns the value as a 32 character hex string. .. versionadded:: 1.5.0 Examples -------- >>> spark.createDataFrame([('ABC',)], ['a']).select(md5('a').alias('hash')).collect() [Row(hash='902fbdd2b1df0c4f70b4a5d23525e932')] """ return _invoke_function_over_columns("md5", col) [docs]def sha1(col: "ColumnOrName") -> Column: """Returns the hex string result of SHA-1. .. versionadded:: 1.5.0 Examples -------- >>> spark.createDataFrame([('ABC',)], ['a']).select(sha1('a').alias('hash')).collect() [Row(hash='3c01bdbb26f358bab27f267924aa2c9a03fcfdb8')] """ return _invoke_function_over_columns("sha1", col) [docs]def sha2(col: "ColumnOrName", numBits: int) -> Column: """Returns the hex string result of SHA-2 family of hash functions (SHA-224, SHA-256, SHA-384, and SHA-512). The numBits indicates the desired bit length of the result, which must have a value of 224, 256, 384, 512, or 0 (which is equivalent to 256). .. versionadded:: 1.5.0 Examples -------- >>> digests = df.select(sha2(df.name, 256).alias('s')).collect() >>> digests[0] Row(s='3bc51062973c458d5a6f2d8d64a023246354ad7e064b1e4e009ec8a0699a3043') >>> digests[1] Row(s='cd9fb1e148ccd8442e5aa74904cc73bf6fb54d1d54d333bd596aa9bb4bb4e961') """ return _invoke_function("sha2", _to_java_column(col), numBits) [docs]def hash(*cols: "ColumnOrName") -> Column: """Calculates the hash code of given columns, and returns the result as an int column. .. versionadded:: 2.0.0 Examples -------- >>> spark.createDataFrame([('ABC',)], ['a']).select(hash('a').alias('hash')).collect() [Row(hash=-757602832)] """ return _invoke_function_over_seq_of_columns("hash", cols) [docs]def xxhash64(*cols: "ColumnOrName") -> Column: """Calculates the hash code of given columns using the 64-bit variant of the xxHash algorithm, and returns the result as a long column. .. versionadded:: 3.0.0 Examples -------- >>> spark.createDataFrame([('ABC',)], ['a']).select(xxhash64('a').alias('hash')).collect() [Row(hash=4105715581806190027)] """ return _invoke_function_over_seq_of_columns("xxhash64", cols) [docs]def assert_true(col: "ColumnOrName", errMsg: Optional[Union[Column, str]] = None) -> Column: """ Returns null if the input column is true; throws an exception with the provided error message otherwise. .. versionadded:: 3.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str column name or column that represents the input column to test errMsg : :class:`~pyspark.sql.Column` or str A Python string literal or column containing the error message Examples -------- >>> df = spark.createDataFrame([(0,1)], ['a', 'b']) >>> df.select(assert_true(df.a < df.b).alias('r')).collect() [Row(r=None)] >>> df = spark.createDataFrame([(0,1)], ['a', 'b']) >>> df.select(assert_true(df.a < df.b, df.a).alias('r')).collect() [Row(r=None)] >>> df = spark.createDataFrame([(0,1)], ['a', 'b']) >>> df.select(assert_true(df.a < df.b, 'error').alias('r')).collect() [Row(r=None)] """ if errMsg is None: return _invoke_function_over_columns("assert_true", col) if not isinstance(errMsg, (str, Column)): raise TypeError("errMsg should be a Column or a str, got {}".format(type(errMsg))) errMsg = ( _create_column_from_literal(errMsg) if isinstance(errMsg, str) else _to_java_column(errMsg) ) return _invoke_function("assert_true", _to_java_column(col), errMsg) [docs]@since(3.1) def raise_error(errMsg: Union[Column, str]) -> Column: """ Throws an exception with the provided error message. Parameters ---------- errMsg : :class:`~pyspark.sql.Column` or str A Python string literal or column containing the error message """ if not isinstance(errMsg, (str, Column)): raise TypeError("errMsg should be a Column or a str, got {}".format(type(errMsg))) errMsg = ( _create_column_from_literal(errMsg) if isinstance(errMsg, str) else _to_java_column(errMsg) ) return _invoke_function("raise_error", errMsg) # ---------------------- String/Binary functions ------------------------------ [docs]@since(1.5) def upper(col: "ColumnOrName") -> Column: """ Converts a string expression to upper case. """ return _invoke_function_over_columns("upper", col) [docs]@since(1.5) def lower(col: "ColumnOrName") -> Column: """ Converts a string expression to lower case. """ return _invoke_function_over_columns("lower", col) [docs]@since(1.5) def ascii(col: "ColumnOrName") -> Column: """ Computes the numeric value of the first character of the string column. """ return _invoke_function_over_columns("ascii", col) [docs]@since(1.5) def base64(col: "ColumnOrName") -> Column: """ Computes the BASE64 encoding of a binary column and returns it as a string column. """ return _invoke_function_over_columns("base64", col) [docs]@since(1.5) def unbase64(col: "ColumnOrName") -> Column: """ Decodes a BASE64 encoded string column and returns it as a binary column. """ return _invoke_function_over_columns("unbase64", col) [docs]@since(1.5) def ltrim(col: "ColumnOrName") -> Column: """ Trim the spaces from left end for the specified string value. """ return _invoke_function_over_columns("ltrim", col) [docs]@since(1.5) def rtrim(col: "ColumnOrName") -> Column: """ Trim the spaces from right end for the specified string value. """ return _invoke_function_over_columns("rtrim", col) [docs]@since(1.5) def trim(col: "ColumnOrName") -> Column: """ Trim the spaces from both ends for the specified string column. """ return _invoke_function_over_columns("trim", col) [docs]def concat_ws(sep: str, *cols: "ColumnOrName") -> Column: """ Concatenates multiple input string columns together into a single string column, using the given separator. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('abcd','123')], ['s', 'd']) >>> df.select(concat_ws('-', df.s, df.d).alias('s')).collect() [Row(s='abcd-123')] """ sc = SparkContext._active_spark_context assert sc is not None and sc._jvm is not None return _invoke_function("concat_ws", sep, _to_seq(sc, cols, _to_java_column)) [docs]@since(1.5) def decode(col: "ColumnOrName", charset: str) -> Column: """ Computes the first argument into a string from a binary using the provided character set (one of 'US-ASCII', 'ISO-8859-1', 'UTF-8', 'UTF-16BE', 'UTF-16LE', 'UTF-16'). """ return _invoke_function("decode", _to_java_column(col), charset) [docs]@since(1.5) def encode(col: "ColumnOrName", charset: str) -> Column: """ Computes the first argument into a binary from a string using the provided character set (one of 'US-ASCII', 'ISO-8859-1', 'UTF-8', 'UTF-16BE', 'UTF-16LE', 'UTF-16'). """ return _invoke_function("encode", _to_java_column(col), charset) [docs]def format_number(col: "ColumnOrName", d: int) -> Column: """ Formats the number X to a format like '#,--#,--#.--', rounded to d decimal places with HALF_EVEN round mode, and returns the result as a string. .. versionadded:: 1.5.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str the column name of the numeric value to be formatted d : int the N decimal places >>> spark.createDataFrame([(5,)], ['a']).select(format_number('a', 4).alias('v')).collect() [Row(v='5.0000')] """ return _invoke_function("format_number", _to_java_column(col), d) [docs]def format_string(format: str, *cols: "ColumnOrName") -> Column: """ Formats the arguments in printf-style and returns the result as a string column. .. versionadded:: 1.5.0 Parameters ---------- format : str string that can contain embedded format tags and used as result column's value cols : :class:`~pyspark.sql.Column` or str column names or :class:`~pyspark.sql.Column`\\s to be used in formatting Examples -------- >>> df = spark.createDataFrame([(5, "hello")], ['a', 'b']) >>> df.select(format_string('%d %s', df.a, df.b).alias('v')).collect() [Row(v='5 hello')] """ sc = SparkContext._active_spark_context assert sc is not None and sc._jvm is not None return _invoke_function("format_string", format, _to_seq(sc, cols, _to_java_column)) [docs]def instr(str: "ColumnOrName", substr: str) -> Column: """ Locate the position of the first occurrence of substr column in the given string. Returns null if either of the arguments are null. .. versionadded:: 1.5.0 Notes ----- The position is not zero based, but 1 based index. Returns 0 if substr could not be found in str. >>> df = spark.createDataFrame([('abcd',)], ['s',]) >>> df.select(instr(df.s, 'b').alias('s')).collect() [Row(s=2)] """ return _invoke_function("instr", _to_java_column(str), substr) [docs]def overlay( src: "ColumnOrName", replace: "ColumnOrName", pos: Union["ColumnOrName", int], len: Union["ColumnOrName", int] = -1, ) -> Column: """ Overlay the specified portion of `src` with `replace`, starting from byte position `pos` of `src` and proceeding for `len` bytes. .. versionadded:: 3.0.0 Parameters ---------- src : :class:`~pyspark.sql.Column` or str column name or column containing the string that will be replaced replace : :class:`~pyspark.sql.Column` or str column name or column containing the substitution string pos : :class:`~pyspark.sql.Column` or str or int column name, column, or int containing the starting position in src len : :class:`~pyspark.sql.Column` or str or int column name, column, or int containing the number of bytes to replace in src string by 'replace' defaults to -1, which represents the length of the 'replace' string Examples -------- >>> df = spark.createDataFrame([("SPARK_SQL", "CORE")], ("x", "y")) >>> df.select(overlay("x", "y", 7).alias("overlayed")).collect() [Row(overlayed='SPARK_CORE')] >>> df.select(overlay("x", "y", 7, 0).alias("overlayed")).collect() [Row(overlayed='SPARK_CORESQL')] >>> df.select(overlay("x", "y", 7, 2).alias("overlayed")).collect() [Row(overlayed='SPARK_COREL')] """ if not isinstance(pos, (int, str, Column)): raise TypeError( "pos should be an integer or a Column / column name, got {}".format(type(pos)) ) if len is not None and not isinstance(len, (int, str, Column)): raise TypeError( "len should be an integer or a Column / column name, got {}".format(type(len)) ) pos = _create_column_from_literal(pos) if isinstance(pos, int) else _to_java_column(pos) len = _create_column_from_literal(len) if isinstance(len, int) else _to_java_column(len) return _invoke_function("overlay", _to_java_column(src), _to_java_column(replace), pos, len) [docs]def sentences( string: "ColumnOrName", language: Optional["ColumnOrName"] = None, country: Optional["ColumnOrName"] = None, ) -> Column: """ Splits a string into arrays of sentences, where each sentence is an array of words. The 'language' and 'country' arguments are optional, and if omitted, the default locale is used. .. versionadded:: 3.2.0 Parameters ---------- string : :class:`~pyspark.sql.Column` or str a string to be split language : :class:`~pyspark.sql.Column` or str, optional a language of the locale country : :class:`~pyspark.sql.Column` or str, optional a country of the locale Examples -------- >>> df = spark.createDataFrame([["This is an example sentence."]], ["string"]) >>> df.select(sentences(df.string, lit("en"), lit("US"))).show(truncate=False) +-----------------------------------+ |sentences(string, en, US) | +-----------------------------------+ |[[This, is, an, example, sentence]]| +-----------------------------------+ """ if language is None: language = lit("") if country is None: country = lit("") return _invoke_function_over_columns("sentences", string, language, country) [docs]def substring(str: "ColumnOrName", pos: int, len: int) -> Column: """ Substring starts at `pos` and is of length `len` when str is String type or returns the slice of byte array that starts at `pos` in byte and is of length `len` when str is Binary type. .. versionadded:: 1.5.0 Notes ----- The position is not zero based, but 1 based index. Examples -------- >>> df = spark.createDataFrame([('abcd',)], ['s',]) >>> df.select(substring(df.s, 1, 2).alias('s')).collect() [Row(s='ab')] """ return _invoke_function("substring", _to_java_column(str), pos, len) [docs]def substring_index(str: "ColumnOrName", delim: str, count: int) -> Column: """ Returns the substring from string str before count occurrences of the delimiter delim. If count is positive, everything the left of the final delimiter (counting from left) is returned. If count is negative, every to the right of the final delimiter (counting from the right) is returned. substring_index performs a case-sensitive match when searching for delim. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('a.b.c.d',)], ['s']) >>> df.select(substring_index(df.s, '.', 2).alias('s')).collect() [Row(s='a.b')] >>> df.select(substring_index(df.s, '.', -3).alias('s')).collect() [Row(s='b.c.d')] """ return _invoke_function("substring_index", _to_java_column(str), delim, count) [docs]def levenshtein(left: "ColumnOrName", right: "ColumnOrName") -> Column: """Computes the Levenshtein distance of the two given strings. .. versionadded:: 1.5.0 Examples -------- >>> df0 = spark.createDataFrame([('kitten', 'sitting',)], ['l', 'r']) >>> df0.select(levenshtein('l', 'r').alias('d')).collect() [Row(d=3)] """ return _invoke_function_over_columns("levenshtein", left, right) [docs]def locate(substr: str, str: "ColumnOrName", pos: int = 1) -> Column: """ Locate the position of the first occurrence of substr in a string column, after position pos. .. versionadded:: 1.5.0 Parameters ---------- substr : str a string str : :class:`~pyspark.sql.Column` or str a Column of :class:`pyspark.sql.types.StringType` pos : int, optional start position (zero based) Notes ----- The position is not zero based, but 1 based index. Returns 0 if substr could not be found in str. Examples -------- >>> df = spark.createDataFrame([('abcd',)], ['s',]) >>> df.select(locate('b', df.s, 1).alias('s')).collect() [Row(s=2)] """ return _invoke_function("locate", substr, _to_java_column(str), pos) [docs]def lpad(col: "ColumnOrName", len: int, pad: str) -> Column: """ Left-pad the string column to width `len` with `pad`. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('abcd',)], ['s',]) >>> df.select(lpad(df.s, 6, '#').alias('s')).collect() [Row(s='##abcd')] """ return _invoke_function("lpad", _to_java_column(col), len, pad) [docs]def rpad(col: "ColumnOrName", len: int, pad: str) -> Column: """ Right-pad the string column to width `len` with `pad`. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('abcd',)], ['s',]) >>> df.select(rpad(df.s, 6, '#').alias('s')).collect() [Row(s='abcd##')] """ return _invoke_function("rpad", _to_java_column(col), len, pad) [docs]def repeat(col: "ColumnOrName", n: int) -> Column: """ Repeats a string column n times, and returns it as a new string column. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('ab',)], ['s',]) >>> df.select(repeat(df.s, 3).alias('s')).collect() [Row(s='ababab')] """ return _invoke_function("repeat", _to_java_column(col), n) [docs]def split(str: "ColumnOrName", pattern: str, limit: int = -1) -> Column: """ Splits str around matches of the given pattern. .. versionadded:: 1.5.0 Parameters ---------- str : :class:`~pyspark.sql.Column` or str a string expression to split pattern : str a string representing a regular expression. The regex string should be a Java regular expression. limit : int, optional an integer which controls the number of times `pattern` is applied. * ``limit > 0``: The resulting array's length will not be more than `limit`, and the resulting array's last entry will contain all input beyond the last matched pattern. * ``limit <= 0``: `pattern` will be applied as many times as possible, and the resulting array can be of any size. .. versionchanged:: 3.0 `split` now takes an optional `limit` field. If not provided, default limit value is -1. Examples -------- >>> df = spark.createDataFrame([('oneAtwoBthreeC',)], ['s',]) >>> df.select(split(df.s, '[ABC]', 2).alias('s')).collect() [Row(s=['one', 'twoBthreeC'])] >>> df.select(split(df.s, '[ABC]', -1).alias('s')).collect() [Row(s=['one', 'two', 'three', ''])] """ return _invoke_function("split", _to_java_column(str), pattern, limit) [docs]def regexp_extract(str: "ColumnOrName", pattern: str, idx: int) -> Column: r"""Extract a specific group matched by a Java regex, from the specified string column. If the regex did not match, or the specified group did not match, an empty string is returned. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('100-200',)], ['str']) >>> df.select(regexp_extract('str', r'(\d+)-(\d+)', 1).alias('d')).collect() [Row(d='100')] >>> df = spark.createDataFrame([('foo',)], ['str']) >>> df.select(regexp_extract('str', r'(\d+)', 1).alias('d')).collect() [Row(d='')] >>> df = spark.createDataFrame([('aaaac',)], ['str']) >>> df.select(regexp_extract('str', '(a+)(b)?(c)', 2).alias('d')).collect() [Row(d='')] """ return _invoke_function("regexp_extract", _to_java_column(str), pattern, idx) [docs]def regexp_replace(str: "ColumnOrName", pattern: str, replacement: str) -> Column: r"""Replace all substrings of the specified string value that match regexp with rep. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('100-200',)], ['str']) >>> df.select(regexp_replace('str', r'(\d+)', '--').alias('d')).collect() [Row(d='-----')] """ return _invoke_function("regexp_replace", _to_java_column(str), pattern, replacement) [docs]def initcap(col: "ColumnOrName") -> Column: """Translate the first letter of each word to upper case in the sentence. .. versionadded:: 1.5.0 Examples -------- >>> spark.createDataFrame([('ab cd',)], ['a']).select(initcap("a").alias('v')).collect() [Row(v='Ab Cd')] """ return _invoke_function_over_columns("initcap", col) [docs]def soundex(col: "ColumnOrName") -> Column: """ Returns the SoundEx encoding for a string .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([("Peters",),("Uhrbach",)], ['name']) >>> df.select(soundex(df.name).alias("soundex")).collect() [Row(soundex='P362'), Row(soundex='U612')] """ return _invoke_function_over_columns("soundex", col) [docs]def bin(col: "ColumnOrName") -> Column: """Returns the string representation of the binary value of the given column. .. versionadded:: 1.5.0 Examples -------- >>> df.select(bin(df.age).alias('c')).collect() [Row(c='10'), Row(c='101')] """ return _invoke_function_over_columns("bin", col) [docs]def hex(col: "ColumnOrName") -> Column: """Computes hex value of the given column, which could be :class:`pyspark.sql.types.StringType`, :class:`pyspark.sql.types.BinaryType`, :class:`pyspark.sql.types.IntegerType` or :class:`pyspark.sql.types.LongType`. .. versionadded:: 1.5.0 Examples -------- >>> spark.createDataFrame([('ABC', 3)], ['a', 'b']).select(hex('a'), hex('b')).collect() [Row(hex(a)='414243', hex(b)='3')] """ return _invoke_function_over_columns("hex", col) [docs]def unhex(col: "ColumnOrName") -> Column: """Inverse of hex. Interprets each pair of characters as a hexadecimal number and converts to the byte representation of number. .. versionadded:: 1.5.0 Examples -------- >>> spark.createDataFrame([('414243',)], ['a']).select(unhex('a')).collect() [Row(unhex(a)=bytearray(b'ABC'))] """ return _invoke_function_over_columns("unhex", col) [docs]def length(col: "ColumnOrName") -> Column: """Computes the character length of string data or number of bytes of binary data. The length of character data includes the trailing spaces. The length of binary data includes binary zeros. .. versionadded:: 1.5.0 Examples -------- >>> spark.createDataFrame([('ABC ',)], ['a']).select(length('a').alias('length')).collect() [Row(length=4)] """ return _invoke_function_over_columns("length", col) [docs]def octet_length(col: "ColumnOrName") -> Column: """ Calculates the byte length for the specified string column. .. versionadded:: 3.3.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str Source column or strings Returns ------- :class:`~pyspark.sql.Column` Byte length of the col Examples -------- >>> from pyspark.sql.functions import octet_length >>> spark.createDataFrame([('cat',), ( '\U0001F408',)], ['cat']) \\ ... .select(octet_length('cat')).collect() [Row(octet_length(cat)=3), Row(octet_length(cat)=4)] """ return _invoke_function_over_columns("octet_length", col) [docs]def bit_length(col: "ColumnOrName") -> Column: """ Calculates the bit length for the specified string column. .. versionadded:: 3.3.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str Source column or strings Returns ------- :class:`~pyspark.sql.Column` Bit length of the col Examples -------- >>> from pyspark.sql.functions import bit_length >>> spark.createDataFrame([('cat',), ( '\U0001F408',)], ['cat']) \\ ... .select(bit_length('cat')).collect() [Row(bit_length(cat)=24), Row(bit_length(cat)=32)] """ return _invoke_function_over_columns("bit_length", col) [docs]def translate(srcCol: "ColumnOrName", matching: str, replace: str) -> Column: """A function translate any character in the `srcCol` by a character in `matching`. The characters in `replace` is corresponding to the characters in `matching`. The translate will happen when any character in the string matching with the character in the `matching`. .. versionadded:: 1.5.0 Examples -------- >>> spark.createDataFrame([('translate',)], ['a']).select(translate('a', "rnlt", "123") \\ ... .alias('r')).collect() [Row(r='1a2s3ae')] """ return _invoke_function("translate", _to_java_column(srcCol), matching, replace) # ---------------------- Collection functions ------------------------------ @overload def create_map(*cols: "ColumnOrName") -> Column: ... @overload def create_map(__cols: Union[List["ColumnOrName_"], Tuple["ColumnOrName_", ...]]) -> Column: ... [docs]def create_map( *cols: Union["ColumnOrName", Union[List["ColumnOrName_"], Tuple["ColumnOrName_", ...]]] ) -> Column: """Creates a new map column. .. versionadded:: 2.0.0 Parameters ---------- cols : :class:`~pyspark.sql.Column` or str column names or :class:`~pyspark.sql.Column`\\s that are grouped as key-value pairs, e.g. (key1, value1, key2, value2, ...). Examples -------- >>> df.select(create_map('name', 'age').alias("map")).collect() [Row(map={'Alice': 2}), Row(map={'Bob': 5})] >>> df.select(create_map([df.name, df.age]).alias("map")).collect() [Row(map={'Alice': 2}), Row(map={'Bob': 5})] """ if len(cols) == 1 and isinstance(cols[0], (list, set)): cols = cols[0] # type: ignore[assignment] return _invoke_function_over_seq_of_columns("map", cols) # type: ignore[arg-type] [docs]def map_from_arrays(col1: "ColumnOrName", col2: "ColumnOrName") -> Column: """Creates a new map from two arrays. .. versionadded:: 2.4.0 Parameters ---------- col1 : :class:`~pyspark.sql.Column` or str name of column containing a set of keys. All elements should not be null col2 : :class:`~pyspark.sql.Column` or str name of column containing a set of values Examples -------- >>> df = spark.createDataFrame([([2, 5], ['a', 'b'])], ['k', 'v']) >>> df.select(map_from_arrays(df.k, df.v).alias("map")).show() +----------------+ | map| +----------------+ |{2 -> a, 5 -> b}| +----------------+ """ return _invoke_function_over_columns("map_from_arrays", col1, col2) @overload def array(*cols: "ColumnOrName") -> Column: ... @overload def array(__cols: Union[List["ColumnOrName_"], Tuple["ColumnOrName_", ...]]) -> Column: ... [docs]def array( *cols: Union["ColumnOrName", Union[List["ColumnOrName_"], Tuple["ColumnOrName_", ...]]] ) -> Column: """Creates a new array column. .. versionadded:: 1.4.0 Parameters ---------- cols : :class:`~pyspark.sql.Column` or str column names or :class:`~pyspark.sql.Column`\\s that have the same data type. Examples -------- >>> df.select(array('age', 'age').alias("arr")).collect() [Row(arr=[2, 2]), Row(arr=[5, 5])] >>> df.select(array([df.age, df.age]).alias("arr")).collect() [Row(arr=[2, 2]), Row(arr=[5, 5])] """ if len(cols) == 1 and isinstance(cols[0], (list, set)): cols = cols[0] # type: ignore[assignment] return _invoke_function_over_seq_of_columns("array", cols) # type: ignore[arg-type] [docs]def array_contains(col: "ColumnOrName", value: Any) -> Column: """ Collection function: returns null if the array is null, true if the array contains the given value, and false otherwise. .. versionadded:: 1.5.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column containing array value : value or column to check for in array Examples -------- >>> df = spark.createDataFrame([(["a", "b", "c"],), ([],)], ['data']) >>> df.select(array_contains(df.data, "a")).collect() [Row(array_contains(data, a)=True), Row(array_contains(data, a)=False)] >>> df.select(array_contains(df.data, lit("a"))).collect() [Row(array_contains(data, a)=True), Row(array_contains(data, a)=False)] """ value = value._jc if isinstance(value, Column) else value return _invoke_function("array_contains", _to_java_column(col), value) [docs]def arrays_overlap(a1: "ColumnOrName", a2: "ColumnOrName") -> Column: """ Collection function: returns true if the arrays contain any common non-null element; if not, returns null if both the arrays are non-empty and any of them contains a null element; returns false otherwise. .. versionadded:: 2.4.0 Examples -------- >>> df = spark.createDataFrame([(["a", "b"], ["b", "c"]), (["a"], ["b", "c"])], ['x', 'y']) >>> df.select(arrays_overlap(df.x, df.y).alias("overlap")).collect() [Row(overlap=True), Row(overlap=False)] """ return _invoke_function_over_columns("arrays_overlap", a1, a2) [docs]def slice( x: "ColumnOrName", start: Union["ColumnOrName", int], length: Union["ColumnOrName", int] ) -> Column: """ Collection function: returns an array containing all the elements in `x` from index `start` (array indices start at 1, or from the end if `start` is negative) with the specified `length`. .. versionadded:: 2.4.0 Parameters ---------- x : :class:`~pyspark.sql.Column` or str column name or column containing the array to be sliced start : :class:`~pyspark.sql.Column` or str or int column name, column, or int containing the starting index length : :class:`~pyspark.sql.Column` or str or int column name, column, or int containing the length of the slice Examples -------- >>> df = spark.createDataFrame([([1, 2, 3],), ([4, 5],)], ['x']) >>> df.select(slice(df.x, 2, 2).alias("sliced")).collect() [Row(sliced=[2, 3]), Row(sliced=[5])] """ start = lit(start) if isinstance(start, int) else start length = lit(length) if isinstance(length, int) else length return _invoke_function_over_columns("slice", x, start, length) [docs]def array_join( col: "ColumnOrName", delimiter: str, null_replacement: Optional[str] = None ) -> Column: """ Concatenates the elements of `column` using the `delimiter`. Null values are replaced with `null_replacement` if set, otherwise they are ignored. .. versionadded:: 2.4.0 Examples -------- >>> df = spark.createDataFrame([(["a", "b", "c"],), (["a", None],)], ['data']) >>> df.select(array_join(df.data, ",").alias("joined")).collect() [Row(joined='a,b,c'), Row(joined='a')] >>> df.select(array_join(df.data, ",", "NULL").alias("joined")).collect() [Row(joined='a,b,c'), Row(joined='a,NULL')] """ sc = SparkContext._active_spark_context assert sc is not None and sc._jvm is not None if null_replacement is None: return _invoke_function("array_join", _to_java_column(col), delimiter) else: return _invoke_function("array_join", _to_java_column(col), delimiter, null_replacement) [docs]def concat(*cols: "ColumnOrName") -> Column: """ Concatenates multiple input columns together into a single column. The function works with strings, binary and compatible array columns. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('abcd','123')], ['s', 'd']) >>> df.select(concat(df.s, df.d).alias('s')).collect() [Row(s='abcd123')] >>> df = spark.createDataFrame([([1, 2], [3, 4], [5]), ([1, 2], None, [3])], ['a', 'b', 'c']) >>> df.select(concat(df.a, df.b, df.c).alias("arr")).collect() [Row(arr=[1, 2, 3, 4, 5]), Row(arr=None)] """ return _invoke_function_over_seq_of_columns("concat", cols) [docs]def array_position(col: "ColumnOrName", value: Any) -> Column: """ Collection function: Locates the position of the first occurrence of the given value in the given array. Returns null if either of the arguments are null. .. versionadded:: 2.4.0 Notes ----- The position is not zero based, but 1 based index. Returns 0 if the given value could not be found in the array. Examples -------- >>> df = spark.createDataFrame([(["c", "b", "a"],), ([],)], ['data']) >>> df.select(array_position(df.data, "a")).collect() [Row(array_position(data, a)=3), Row(array_position(data, a)=0)] """ return _invoke_function("array_position", _to_java_column(col), value) [docs]def element_at(col: "ColumnOrName", extraction: Any) -> Column: """ Collection function: Returns element of array at given index in extraction if col is array. Returns value for the given key in extraction if col is map. .. versionadded:: 2.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column containing array or map extraction : index to check for in array or key to check for in map Notes ----- The position is not zero based, but 1 based index. Examples -------- >>> df = spark.createDataFrame([(["a", "b", "c"],)], ['data']) >>> df.select(element_at(df.data, 1)).collect() [Row(element_at(data, 1)='a')] >>> df = spark.createDataFrame([({"a": 1.0, "b": 2.0},)], ['data']) >>> df.select(element_at(df.data, lit("a"))).collect() [Row(element_at(data, a)=1.0)] """ return _invoke_function_over_columns("element_at", col, lit(extraction)) [docs]def array_remove(col: "ColumnOrName", element: Any) -> Column: """ Collection function: Remove all elements that equal to element from the given array. .. versionadded:: 2.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column containing array element : element to be removed from the array Examples -------- >>> df = spark.createDataFrame([([1, 2, 3, 1, 1],), ([],)], ['data']) >>> df.select(array_remove(df.data, 1)).collect() [Row(array_remove(data, 1)=[2, 3]), Row(array_remove(data, 1)=[])] """ return _invoke_function("array_remove", _to_java_column(col), element) [docs]def array_distinct(col: "ColumnOrName") -> Column: """ Collection function: removes duplicate values from the array. .. versionadded:: 2.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> df = spark.createDataFrame([([1, 2, 3, 2],), ([4, 5, 5, 4],)], ['data']) >>> df.select(array_distinct(df.data)).collect() [Row(array_distinct(data)=[1, 2, 3]), Row(array_distinct(data)=[4, 5])] """ return _invoke_function_over_columns("array_distinct", col) [docs]def array_intersect(col1: "ColumnOrName", col2: "ColumnOrName") -> Column: """ Collection function: returns an array of the elements in the intersection of col1 and col2, without duplicates. .. versionadded:: 2.4.0 Parameters ---------- col1 : :class:`~pyspark.sql.Column` or str name of column containing array col2 : :class:`~pyspark.sql.Column` or str name of column containing array Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2=["c", "d", "a", "f"])]) >>> df.select(array_intersect(df.c1, df.c2)).collect() [Row(array_intersect(c1, c2)=['a', 'c'])] """ return _invoke_function_over_columns("array_intersect", col1, col2) [docs]def array_union(col1: "ColumnOrName", col2: "ColumnOrName") -> Column: """ Collection function: returns an array of the elements in the union of col1 and col2, without duplicates. .. versionadded:: 2.4.0 Parameters ---------- col1 : :class:`~pyspark.sql.Column` or str name of column containing array col2 : :class:`~pyspark.sql.Column` or str name of column containing array Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2=["c", "d", "a", "f"])]) >>> df.select(array_union(df.c1, df.c2)).collect() [Row(array_union(c1, c2)=['b', 'a', 'c', 'd', 'f'])] """ return _invoke_function_over_columns("array_union", col1, col2) [docs]def array_except(col1: "ColumnOrName", col2: "ColumnOrName") -> Column: """ Collection function: returns an array of the elements in col1 but not in col2, without duplicates. .. versionadded:: 2.4.0 Parameters ---------- col1 : :class:`~pyspark.sql.Column` or str name of column containing array col2 : :class:`~pyspark.sql.Column` or str name of column containing array Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2=["c", "d", "a", "f"])]) >>> df.select(array_except(df.c1, df.c2)).collect() [Row(array_except(c1, c2)=['b'])] """ return _invoke_function_over_columns("array_except", col1, col2) [docs]def explode(col: "ColumnOrName") -> Column: """ Returns a new row for each element in the given array or map. Uses the default column name `col` for elements in the array and `key` and `value` for elements in the map unless specified otherwise. .. versionadded:: 1.4.0 Examples -------- >>> from pyspark.sql import Row >>> eDF = spark.createDataFrame([Row(a=1, intlist=[1,2,3], mapfield={"a": "b"})]) >>> eDF.select(explode(eDF.intlist).alias("anInt")).collect() [Row(anInt=1), Row(anInt=2), Row(anInt=3)] >>> eDF.select(explode(eDF.mapfield).alias("key", "value")).show() +---+-----+ |key|value| +---+-----+ | a| b| +---+-----+ """ return _invoke_function_over_columns("explode", col) [docs]def posexplode(col: "ColumnOrName") -> Column: """ Returns a new row for each element with position in the given array or map. Uses the default column name `pos` for position, and `col` for elements in the array and `key` and `value` for elements in the map unless specified otherwise. .. versionadded:: 2.1.0 Examples -------- >>> from pyspark.sql import Row >>> eDF = spark.createDataFrame([Row(a=1, intlist=[1,2,3], mapfield={"a": "b"})]) >>> eDF.select(posexplode(eDF.intlist)).collect() [Row(pos=0, col=1), Row(pos=1, col=2), Row(pos=2, col=3)] >>> eDF.select(posexplode(eDF.mapfield)).show() +---+---+-----+ |pos|key|value| +---+---+-----+ | 0| a| b| +---+---+-----+ """ return _invoke_function_over_columns("posexplode", col) [docs]def explode_outer(col: "ColumnOrName") -> Column: """ Returns a new row for each element in the given array or map. Unlike explode, if the array/map is null or empty then null is produced. Uses the default column name `col` for elements in the array and `key` and `value` for elements in the map unless specified otherwise. .. versionadded:: 2.3.0 Examples -------- >>> df = spark.createDataFrame( ... [(1, ["foo", "bar"], {"x": 1.0}), (2, [], {}), (3, None, None)], ... ("id", "an_array", "a_map") ... ) >>> df.select("id", "an_array", explode_outer("a_map")).show() +---+----------+----+-----+ | id| an_array| key|value| +---+----------+----+-----+ | 1|[foo, bar]| x| 1.0| | 2| []|null| null| | 3| null|null| null| +---+----------+----+-----+ >>> df.select("id", "a_map", explode_outer("an_array")).show() +---+----------+----+ | id| a_map| col| +---+----------+----+ | 1|{x -> 1.0}| foo| | 1|{x -> 1.0}| bar| | 2| {}|null| | 3| null|null| +---+----------+----+ """ return _invoke_function_over_columns("explode_outer", col) [docs]def posexplode_outer(col: "ColumnOrName") -> Column: """ Returns a new row for each element with position in the given array or map. Unlike posexplode, if the array/map is null or empty then the row (null, null) is produced. Uses the default column name `pos` for position, and `col` for elements in the array and `key` and `value` for elements in the map unless specified otherwise. .. versionadded:: 2.3.0 Examples -------- >>> df = spark.createDataFrame( ... [(1, ["foo", "bar"], {"x": 1.0}), (2, [], {}), (3, None, None)], ... ("id", "an_array", "a_map") ... ) >>> df.select("id", "an_array", posexplode_outer("a_map")).show() +---+----------+----+----+-----+ | id| an_array| pos| key|value| +---+----------+----+----+-----+ | 1|[foo, bar]| 0| x| 1.0| | 2| []|null|null| null| | 3| null|null|null| null| +---+----------+----+----+-----+ >>> df.select("id", "a_map", posexplode_outer("an_array")).show() +---+----------+----+----+ | id| a_map| pos| col| +---+----------+----+----+ | 1|{x -> 1.0}| 0| foo| | 1|{x -> 1.0}| 1| bar| | 2| {}|null|null| | 3| null|null|null| +---+----------+----+----+ """ return _invoke_function_over_columns("posexplode_outer", col) [docs]def get_json_object(col: "ColumnOrName", path: str) -> Column: """ Extracts json object from a json string based on json path specified, and returns json string of the extracted json object. It will return null if the input json string is invalid. .. versionadded:: 1.6.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str string column in json format path : str path to the json object to extract Examples -------- >>> data = [("1", '''{"f1": "value1", "f2": "value2"}'''), ("2", '''{"f1": "value12"}''')] >>> df = spark.createDataFrame(data, ("key", "jstring")) >>> df.select(df.key, get_json_object(df.jstring, '$.f1').alias("c0"), \\ ... get_json_object(df.jstring, '$.f2').alias("c1") ).collect() [Row(key='1', c0='value1', c1='value2'), Row(key='2', c0='value12', c1=None)] """ return _invoke_function("get_json_object", _to_java_column(col), path) [docs]def json_tuple(col: "ColumnOrName", *fields: str) -> Column: """Creates a new row for a json column according to the given field names. .. versionadded:: 1.6.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str string column in json format fields : str fields to extract Examples -------- >>> data = [("1", '''{"f1": "value1", "f2": "value2"}'''), ("2", '''{"f1": "value12"}''')] >>> df = spark.createDataFrame(data, ("key", "jstring")) >>> df.select(df.key, json_tuple(df.jstring, 'f1', 'f2')).collect() [Row(key='1', c0='value1', c1='value2'), Row(key='2', c0='value12', c1=None)] """ sc = SparkContext._active_spark_context assert sc is not None and sc._jvm is not None return _invoke_function("json_tuple", _to_java_column(col), _to_seq(sc, fields)) [docs]def from_json( col: "ColumnOrName", schema: Union[ArrayType, StructType, Column, str], options: Optional[Dict[str, str]] = None, ) -> Column: """ Parses a column containing a JSON string into a :class:`MapType` with :class:`StringType` as keys type, :class:`StructType` or :class:`ArrayType` with the specified schema. Returns `null`, in the case of an unparseable string. .. versionadded:: 2.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str a column or column name in JSON format schema : :class:`DataType` or str a StructType, ArrayType of StructType or Python string literal with a DDL-formatted string to use when parsing the json column options : dict, optional options to control parsing. accepts the same options as the json datasource. See `Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-json.html#data-source-option>`_ in the version you use. .. # noqa Examples -------- >>> from pyspark.sql.types import * >>> data = [(1, '''{"a": 1}''')] >>> schema = StructType([StructField("a", IntegerType())]) >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(from_json(df.value, schema).alias("json")).collect() [Row(json=Row(a=1))] >>> df.select(from_json(df.value, "a INT").alias("json")).collect() [Row(json=Row(a=1))] >>> df.select(from_json(df.value, "MAP<STRING,INT>").alias("json")).collect() [Row(json={'a': 1})] >>> data = [(1, '''[{"a": 1}]''')] >>> schema = ArrayType(StructType([StructField("a", IntegerType())])) >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(from_json(df.value, schema).alias("json")).collect() [Row(json=[Row(a=1)])] >>> schema = schema_of_json(lit('''{"a": 0}''')) >>> df.select(from_json(df.value, schema).alias("json")).collect() [Row(json=Row(a=None))] >>> data = [(1, '''[1, 2, 3]''')] >>> schema = ArrayType(IntegerType()) >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(from_json(df.value, schema).alias("json")).collect() [Row(json=[1, 2, 3])] """ if isinstance(schema, DataType): schema = schema.json() elif isinstance(schema, Column): schema = _to_java_column(schema) return _invoke_function("from_json", _to_java_column(col), schema, _options_to_str(options)) [docs]def to_json(col: "ColumnOrName", options: Optional[Dict[str, str]] = None) -> Column: """ Converts a column containing a :class:`StructType`, :class:`ArrayType` or a :class:`MapType` into a JSON string. Throws an exception, in the case of an unsupported type. .. versionadded:: 2.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column containing a struct, an array or a map. options : dict, optional options to control converting. accepts the same options as the JSON datasource. See `Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-json.html#data-source-option>`_ in the version you use. Additionally the function supports the `pretty` option which enables pretty JSON generation. .. # noqa Examples -------- >>> from pyspark.sql import Row >>> from pyspark.sql.types import * >>> data = [(1, Row(age=2, name='Alice'))] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_json(df.value).alias("json")).collect() [Row(json='{"age":2,"name":"Alice"}')] >>> data = [(1, [Row(age=2, name='Alice'), Row(age=3, name='Bob')])] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_json(df.value).alias("json")).collect() [Row(json='[{"age":2,"name":"Alice"},{"age":3,"name":"Bob"}]')] >>> data = [(1, {"name": "Alice"})] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_json(df.value).alias("json")).collect() [Row(json='{"name":"Alice"}')] >>> data = [(1, [{"name": "Alice"}, {"name": "Bob"}])] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_json(df.value).alias("json")).collect() [Row(json='[{"name":"Alice"},{"name":"Bob"}]')] >>> data = [(1, ["Alice", "Bob"])] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_json(df.value).alias("json")).collect() [Row(json='["Alice","Bob"]')] """ return _invoke_function("to_json", _to_java_column(col), _options_to_str(options)) [docs]def schema_of_json(json: "ColumnOrName", options: Optional[Dict[str, str]] = None) -> Column: """ Parses a JSON string and infers its schema in DDL format. .. versionadded:: 2.4.0 Parameters ---------- json : :class:`~pyspark.sql.Column` or str a JSON string or a foldable string column containing a JSON string. options : dict, optional options to control parsing. accepts the same options as the JSON datasource. See `Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-json.html#data-source-option>`_ in the version you use. .. # noqa .. versionchanged:: 3.0 It accepts `options` parameter to control schema inferring. Examples -------- >>> df = spark.range(1) >>> df.select(schema_of_json(lit('{"a": 0}')).alias("json")).collect() [Row(json='STRUCT<a: BIGINT>')] >>> schema = schema_of_json('{a: 1}', {'allowUnquotedFieldNames':'true'}) >>> df.select(schema.alias("json")).collect() [Row(json='STRUCT<a: BIGINT>')] """ if isinstance(json, str): col = _create_column_from_literal(json) elif isinstance(json, Column): col = _to_java_column(json) else: raise TypeError("schema argument should be a column or string") return _invoke_function("schema_of_json", col, _options_to_str(options)) [docs]def schema_of_csv(csv: "ColumnOrName", options: Optional[Dict[str, str]] = None) -> Column: """ Parses a CSV string and infers its schema in DDL format. .. versionadded:: 3.0.0 Parameters ---------- csv : :class:`~pyspark.sql.Column` or str a CSV string or a foldable string column containing a CSV string. options : dict, optional options to control parsing. accepts the same options as the CSV datasource. See `Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-csv.html#data-source-option>`_ in the version you use. .. # noqa Examples -------- >>> df = spark.range(1) >>> df.select(schema_of_csv(lit('1|a'), {'sep':'|'}).alias("csv")).collect() [Row(csv='STRUCT<_c0: INT, _c1: STRING>')] >>> df.select(schema_of_csv('1|a', {'sep':'|'}).alias("csv")).collect() [Row(csv='STRUCT<_c0: INT, _c1: STRING>')] """ if isinstance(csv, str): col = _create_column_from_literal(csv) elif isinstance(csv, Column): col = _to_java_column(csv) else: raise TypeError("schema argument should be a column or string") return _invoke_function("schema_of_csv", col, _options_to_str(options)) [docs]def to_csv(col: "ColumnOrName", options: Optional[Dict[str, str]] = None) -> Column: """ Converts a column containing a :class:`StructType` into a CSV string. Throws an exception, in the case of an unsupported type. .. versionadded:: 3.0.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column containing a struct. options: dict, optional options to control converting. accepts the same options as the CSV datasource. See `Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-csv.html#data-source-option>`_ in the version you use. .. # noqa Examples -------- >>> from pyspark.sql import Row >>> data = [(1, Row(age=2, name='Alice'))] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_csv(df.value).alias("csv")).collect() [Row(csv='2,Alice')] """ return _invoke_function("to_csv", _to_java_column(col), _options_to_str(options)) [docs]def size(col: "ColumnOrName") -> Column: """ Collection function: returns the length of the array or map stored in the column. .. versionadded:: 1.5.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> df = spark.createDataFrame([([1, 2, 3],),([1],),([],)], ['data']) >>> df.select(size(df.data)).collect() [Row(size(data)=3), Row(size(data)=1), Row(size(data)=0)] """ return _invoke_function_over_columns("size", col) [docs]def array_min(col: "ColumnOrName") -> Column: """ Collection function: returns the minimum value of the array. .. versionadded:: 2.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> df = spark.createDataFrame([([2, 1, 3],), ([None, 10, -1],)], ['data']) >>> df.select(array_min(df.data).alias('min')).collect() [Row(min=1), Row(min=-1)] """ return _invoke_function_over_columns("array_min", col) [docs]def array_max(col: "ColumnOrName") -> Column: """ Collection function: returns the maximum value of the array. .. versionadded:: 2.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> df = spark.createDataFrame([([2, 1, 3],), ([None, 10, -1],)], ['data']) >>> df.select(array_max(df.data).alias('max')).collect() [Row(max=3), Row(max=10)] """ return _invoke_function_over_columns("array_max", col) [docs]def sort_array(col: "ColumnOrName", asc: bool = True) -> Column: """ Collection function: sorts the input array in ascending or descending order according to the natural ordering of the array elements. Null elements will be placed at the beginning of the returned array in ascending order or at the end of the returned array in descending order. .. versionadded:: 1.5.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression asc : bool, optional Examples -------- >>> df = spark.createDataFrame([([2, 1, None, 3],),([1],),([],)], ['data']) >>> df.select(sort_array(df.data).alias('r')).collect() [Row(r=[None, 1, 2, 3]), Row(r=[1]), Row(r=[])] >>> df.select(sort_array(df.data, asc=False).alias('r')).collect() [Row(r=[3, 2, 1, None]), Row(r=[1]), Row(r=[])] """ return _invoke_function("sort_array", _to_java_column(col), asc) [docs]def array_sort(col: "ColumnOrName") -> Column: """ Collection function: sorts the input array in ascending order. The elements of the input array must be orderable. Null elements will be placed at the end of the returned array. .. versionadded:: 2.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> df = spark.createDataFrame([([2, 1, None, 3],),([1],),([],)], ['data']) >>> df.select(array_sort(df.data).alias('r')).collect() [Row(r=[1, 2, 3, None]), Row(r=[1]), Row(r=[])] """ return _invoke_function_over_columns("array_sort", col) [docs]def shuffle(col: "ColumnOrName") -> Column: """ Collection function: Generates a random permutation of the given array. .. versionadded:: 2.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Notes ----- The function is non-deterministic. Examples -------- >>> df = spark.createDataFrame([([1, 20, 3, 5],), ([1, 20, None, 3],)], ['data']) >>> df.select(shuffle(df.data).alias('s')).collect() # doctest: +SKIP [Row(s=[3, 1, 5, 20]), Row(s=[20, None, 3, 1])] """ return _invoke_function_over_columns("shuffle", col) [docs]def reverse(col: "ColumnOrName") -> Column: """ Collection function: returns a reversed string or an array with reverse order of elements. .. versionadded:: 1.5.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> df = spark.createDataFrame([('Spark SQL',)], ['data']) >>> df.select(reverse(df.data).alias('s')).collect() [Row(s='LQS krapS')] >>> df = spark.createDataFrame([([2, 1, 3],) ,([1],) ,([],)], ['data']) >>> df.select(reverse(df.data).alias('r')).collect() [Row(r=[3, 1, 2]), Row(r=[1]), Row(r=[])] """ return _invoke_function_over_columns("reverse", col) [docs]def flatten(col: "ColumnOrName") -> Column: """ Collection function: creates a single array from an array of arrays. If a structure of nested arrays is deeper than two levels, only one level of nesting is removed. .. versionadded:: 2.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> df = spark.createDataFrame([([[1, 2, 3], [4, 5], [6]],), ([None, [4, 5]],)], ['data']) >>> df.select(flatten(df.data).alias('r')).collect() [Row(r=[1, 2, 3, 4, 5, 6]), Row(r=None)] """ return _invoke_function_over_columns("flatten", col) [docs]def map_keys(col: "ColumnOrName") -> Column: """ Collection function: Returns an unordered array containing the keys of the map. .. versionadded:: 2.3.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> from pyspark.sql.functions import map_keys >>> df = spark.sql("SELECT map(1, 'a', 2, 'b') as data") >>> df.select(map_keys("data").alias("keys")).show() +------+ | keys| +------+ |[1, 2]| +------+ """ return _invoke_function_over_columns("map_keys", col) [docs]def map_values(col: "ColumnOrName") -> Column: """ Collection function: Returns an unordered array containing the values of the map. .. versionadded:: 2.3.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> from pyspark.sql.functions import map_values >>> df = spark.sql("SELECT map(1, 'a', 2, 'b') as data") >>> df.select(map_values("data").alias("values")).show() +------+ |values| +------+ |[a, b]| +------+ """ return _invoke_function_over_columns("map_values", col) [docs]def map_entries(col: "ColumnOrName") -> Column: """ Collection function: Returns an unordered array of all entries in the given map. .. versionadded:: 3.0.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> from pyspark.sql.functions import map_entries >>> df = spark.sql("SELECT map(1, 'a', 2, 'b') as data") >>> df.select(map_entries("data").alias("entries")).show() +----------------+ | entries| +----------------+ |[{1, a}, {2, b}]| +----------------+ """ return _invoke_function_over_columns("map_entries", col) [docs]def map_from_entries(col: "ColumnOrName") -> Column: """ Collection function: Returns a map created from the given array of entries. .. versionadded:: 2.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> from pyspark.sql.functions import map_from_entries >>> df = spark.sql("SELECT array(struct(1, 'a'), struct(2, 'b')) as data") >>> df.select(map_from_entries("data").alias("map")).show() +----------------+ | map| +----------------+ |{1 -> a, 2 -> b}| +----------------+ """ return _invoke_function_over_columns("map_from_entries", col) [docs]def array_repeat(col: "ColumnOrName", count: Union["ColumnOrName", int]) -> Column: """ Collection function: creates an array containing a column repeated count times. .. versionadded:: 2.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str column name or column that contains the element to be repeated count : :class:`~pyspark.sql.Column` or str or int column name, column, or int containing the number of times to repeat the first argument Examples -------- >>> df = spark.createDataFrame([('ab',)], ['data']) >>> df.select(array_repeat(df.data, 3).alias('r')).collect() [Row(r=['ab', 'ab', 'ab'])] """ count = lit(count) if isinstance(count, int) else count return _invoke_function_over_columns("array_repeat", col, count) [docs]def arrays_zip(*cols: "ColumnOrName") -> Column: """ Collection function: Returns a merged array of structs in which the N-th struct contains all N-th values of input arrays. .. versionadded:: 2.4.0 Parameters ---------- cols : :class:`~pyspark.sql.Column` or str columns of arrays to be merged. Examples -------- >>> from pyspark.sql.functions import arrays_zip >>> df = spark.createDataFrame([(([1, 2, 3], [2, 3, 4]))], ['vals1', 'vals2']) >>> df.select(arrays_zip(df.vals1, df.vals2).alias('zipped')).collect() [Row(zipped=[Row(vals1=1, vals2=2), Row(vals1=2, vals2=3), Row(vals1=3, vals2=4)])] """ return _invoke_function_over_seq_of_columns("arrays_zip", cols) @overload def map_concat(*cols: "ColumnOrName") -> Column: ... @overload def map_concat(__cols: Union[List["ColumnOrName_"], Tuple["ColumnOrName_", ...]]) -> Column: ... [docs]def map_concat( *cols: Union["ColumnOrName", Union[List["ColumnOrName_"], Tuple["ColumnOrName_", ...]]] ) -> Column: """Returns the union of all the given maps. .. versionadded:: 2.4.0 Parameters ---------- cols : :class:`~pyspark.sql.Column` or str column names or :class:`~pyspark.sql.Column`\\s Examples -------- >>> from pyspark.sql.functions import map_concat >>> df = spark.sql("SELECT map(1, 'a', 2, 'b') as map1, map(3, 'c') as map2") >>> df.select(map_concat("map1", "map2").alias("map3")).show(truncate=False) +------------------------+ |map3 | +------------------------+ |{1 -> a, 2 -> b, 3 -> c}| +------------------------+ """ if len(cols) == 1 and isinstance(cols[0], (list, set)): cols = cols[0] # type: ignore[assignment] return _invoke_function_over_seq_of_columns("map_concat", cols) # type: ignore[arg-type] [docs]def sequence( start: "ColumnOrName", stop: "ColumnOrName", step: Optional["ColumnOrName"] = None ) -> Column: """ Generate a sequence of integers from `start` to `stop`, incrementing by `step`. If `step` is not set, incrementing by 1 if `start` is less than or equal to `stop`, otherwise -1. .. versionadded:: 2.4.0 Examples -------- >>> df1 = spark.createDataFrame([(-2, 2)], ('C1', 'C2')) >>> df1.select(sequence('C1', 'C2').alias('r')).collect() [Row(r=[-2, -1, 0, 1, 2])] >>> df2 = spark.createDataFrame([(4, -4, -2)], ('C1', 'C2', 'C3')) >>> df2.select(sequence('C1', 'C2', 'C3').alias('r')).collect() [Row(r=[4, 2, 0, -2, -4])] """ if step is None: return _invoke_function_over_columns("sequence", start, stop) else: return _invoke_function_over_columns("sequence", start, stop, step) [docs]def from_csv( col: "ColumnOrName", schema: Union[StructType, Column, str], options: Optional[Dict[str, str]] = None, ) -> Column: """ Parses a column containing a CSV string to a row with the specified schema. Returns `null`, in the case of an unparseable string. .. versionadded:: 3.0.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str a column or column name in CSV format schema :class:`~pyspark.sql.Column` or str a column, or Python string literal with schema in DDL format, to use when parsing the CSV column. options : dict, optional options to control parsing. accepts the same options as the CSV datasource. See `Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-csv.html#data-source-option>`_ in the version you use. .. # noqa Examples -------- >>> data = [("1,2,3",)] >>> df = spark.createDataFrame(data, ("value",)) >>> df.select(from_csv(df.value, "a INT, b INT, c INT").alias("csv")).collect() [Row(csv=Row(a=1, b=2, c=3))] >>> value = data[0][0] >>> df.select(from_csv(df.value, schema_of_csv(value)).alias("csv")).collect() [Row(csv=Row(_c0=1, _c1=2, _c2=3))] >>> data = [(" abc",)] >>> df = spark.createDataFrame(data, ("value",)) >>> options = {'ignoreLeadingWhiteSpace': True} >>> df.select(from_csv(df.value, "s string", options).alias("csv")).collect() [Row(csv=Row(s='abc'))] """ sc = SparkContext._active_spark_context assert sc is not None and sc._jvm is not None if isinstance(schema, str): schema = _create_column_from_literal(schema) elif isinstance(schema, Column): schema = _to_java_column(schema) else: raise TypeError("schema argument should be a column or string") return _invoke_function("from_csv", _to_java_column(col), schema, _options_to_str(options)) def _unresolved_named_lambda_variable(*name_parts: Any) -> Column: """ Create `o.a.s.sql.expressions.UnresolvedNamedLambdaVariable`, convert it to o.s.sql.Column and wrap in Python `Column` Parameters ---------- name_parts : str """ sc = SparkContext._active_spark_context assert sc is not None and sc._jvm is not None name_parts_seq = _to_seq(sc, name_parts) expressions = sc._jvm.org.apache.spark.sql.catalyst.expressions return Column(sc._jvm.Column(expressions.UnresolvedNamedLambdaVariable(name_parts_seq))) def _get_lambda_parameters(f: Callable) -> ValuesView[inspect.Parameter]: signature = inspect.signature(f) parameters = signature.parameters.values() # We should exclude functions that use # variable args and keyword argnames # as well as keyword only args supported_parameter_types = { inspect.Parameter.POSITIONAL_OR_KEYWORD, inspect.Parameter.POSITIONAL_ONLY, } # Validate that # function arity is between 1 and 3 if not (1 <= len(parameters) <= 3): raise ValueError( "f should take between 1 and 3 arguments, but provided function takes {}".format( len(parameters) ) ) # and all arguments can be used as positional if not all(p.kind in supported_parameter_types for p in parameters): raise ValueError("f should use only POSITIONAL or POSITIONAL OR KEYWORD arguments") return parameters def _create_lambda(f: Callable) -> Callable: """ Create `o.a.s.sql.expressions.LambdaFunction` corresponding to transformation described by f :param f: A Python of one of the following forms: - (Column) -> Column: ... - (Column, Column) -> Column: ... - (Column, Column, Column) -> Column: ... """ parameters = _get_lambda_parameters(f) sc = SparkContext._active_spark_context assert sc is not None and sc._jvm is not None expressions = sc._jvm.org.apache.spark.sql.catalyst.expressions argnames = ["x", "y", "z"] args = [ _unresolved_named_lambda_variable( expressions.UnresolvedNamedLambdaVariable.freshVarName(arg) ) for arg in argnames[: len(parameters)] ] result = f(*args) if not isinstance(result, Column): raise ValueError("f should return Column, got {}".format(type(result))) jexpr = result._jc.expr() jargs = _to_seq(sc, [arg._jc.expr() for arg in args]) return expressions.LambdaFunction(jexpr, jargs, False) def _invoke_higher_order_function( name: str, cols: List["ColumnOrName"], funs: List[Callable], ) -> Column: """ Invokes expression identified by name, (relative to ```org.apache.spark.sql.catalyst.expressions``) and wraps the result with Column (first Scala one, then Python). :param name: Name of the expression :param cols: a list of columns :param funs: a list of((*Column) -> Column functions. :return: a Column """ sc = SparkContext._active_spark_context assert sc is not None and sc._jvm is not None expressions = sc._jvm.org.apache.spark.sql.catalyst.expressions expr = getattr(expressions, name) jcols = [_to_java_column(col).expr() for col in cols] jfuns = [_create_lambda(f) for f in funs] return Column(sc._jvm.Column(expr(*jcols + jfuns))) @overload def transform(col: "ColumnOrName", f: Callable[[Column], Column]) -> Column: ... @overload def transform(col: "ColumnOrName", f: Callable[[Column, Column], Column]) -> Column: ... [docs]def transform( col: "ColumnOrName", f: Union[Callable[[Column], Column], Callable[[Column, Column], Column]], ) -> Column: """ Returns an array of elements after applying a transformation to each element in the input array. .. versionadded:: 3.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression f : function a function that is applied to each element of the input array. Can take one of the following forms: - Unary ``(x: Column) -> Column: ...`` - Binary ``(x: Column, i: Column) -> Column...``, where the second argument is a 0-based index of the element. and can use methods of :class:`~pyspark.sql.Column`, functions defined in :py:mod:`pyspark.sql.functions` and Scala ``UserDefinedFunctions``. Python ``UserDefinedFunctions`` are not supported (`SPARK-27052 <https://issues.apache.org/jira/browse/SPARK-27052>`__). Returns ------- :class:`~pyspark.sql.Column` Examples -------- >>> df = spark.createDataFrame([(1, [1, 2, 3, 4])], ("key", "values")) >>> df.select(transform("values", lambda x: x * 2).alias("doubled")).show() +------------+ | doubled| +------------+ |[2, 4, 6, 8]| +------------+ >>> def alternate(x, i): ... return when(i % 2 == 0, x).otherwise(-x) >>> df.select(transform("values", alternate).alias("alternated")).show() +--------------+ | alternated| +--------------+ |[1, -2, 3, -4]| +--------------+ """ return _invoke_higher_order_function("ArrayTransform", [col], [f]) [docs]def exists(col: "ColumnOrName", f: Callable[[Column], Column]) -> Column: """ Returns whether a predicate holds for one or more elements in the array. .. versionadded:: 3.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression f : function ``(x: Column) -> Column: ...`` returning the Boolean expression. Can use methods of :class:`~pyspark.sql.Column`, functions defined in :py:mod:`pyspark.sql.functions` and Scala ``UserDefinedFunctions``. Python ``UserDefinedFunctions`` are not supported (`SPARK-27052 <https://issues.apache.org/jira/browse/SPARK-27052>`__). :return: a :class:`~pyspark.sql.Column` Examples -------- >>> df = spark.createDataFrame([(1, [1, 2, 3, 4]), (2, [3, -1, 0])],("key", "values")) >>> df.select(exists("values", lambda x: x < 0).alias("any_negative")).show() +------------+ |any_negative| +------------+ | false| | true| +------------+ """ return _invoke_higher_order_function("ArrayExists", [col], [f]) [docs]def forall(col: "ColumnOrName", f: Callable[[Column], Column]) -> Column: """ Returns whether a predicate holds for every element in the array. .. versionadded:: 3.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression f : function ``(x: Column) -> Column: ...`` returning the Boolean expression. Can use methods of :class:`~pyspark.sql.Column`, functions defined in :py:mod:`pyspark.sql.functions` and Scala ``UserDefinedFunctions``. Python ``UserDefinedFunctions`` are not supported (`SPARK-27052 <https://issues.apache.org/jira/browse/SPARK-27052>`__). Returns ------- :class:`~pyspark.sql.Column` Examples -------- >>> df = spark.createDataFrame( ... [(1, ["bar"]), (2, ["foo", "bar"]), (3, ["foobar", "foo"])], ... ("key", "values") ... ) >>> df.select(forall("values", lambda x: x.rlike("foo")).alias("all_foo")).show() +-------+ |all_foo| +-------+ | false| | false| | true| +-------+ """ return _invoke_higher_order_function("ArrayForAll", [col], [f]) @overload def filter(col: "ColumnOrName", f: Callable[[Column], Column]) -> Column: ... @overload def filter(col: "ColumnOrName", f: Callable[[Column, Column], Column]) -> Column: ... [docs]def filter( col: "ColumnOrName", f: Union[Callable[[Column], Column], Callable[[Column, Column], Column]], ) -> Column: """ Returns an array of elements for which a predicate holds in a given array. .. versionadded:: 3.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression f : function A function that returns the Boolean expression. Can take one of the following forms: - Unary ``(x: Column) -> Column: ...`` - Binary ``(x: Column, i: Column) -> Column...``, where the second argument is a 0-based index of the element. and can use methods of :class:`~pyspark.sql.Column`, functions defined in :py:mod:`pyspark.sql.functions` and Scala ``UserDefinedFunctions``. Python ``UserDefinedFunctions`` are not supported (`SPARK-27052 <https://issues.apache.org/jira/browse/SPARK-27052>`__). Returns ------- :class:`~pyspark.sql.Column` Examples -------- >>> df = spark.createDataFrame( ... [(1, ["2018-09-20", "2019-02-03", "2019-07-01", "2020-06-01"])], ... ("key", "values") ... ) >>> def after_second_quarter(x): ... return month(to_date(x)) > 6 >>> df.select( ... filter("values", after_second_quarter).alias("after_second_quarter") ... ).show(truncate=False) +------------------------+ |after_second_quarter | +------------------------+ |[2018-09-20, 2019-07-01]| +------------------------+ """ return _invoke_higher_order_function("ArrayFilter", [col], [f]) [docs]def aggregate( col: "ColumnOrName", initialValue: "ColumnOrName", merge: Callable[[Column, Column], Column], finish: Optional[Callable[[Column], Column]] = None, ) -> Column: """ Applies a binary operator to an initial state and all elements in the array, and reduces this to a single state. The final state is converted into the final result by applying a finish function. Both functions can use methods of :class:`~pyspark.sql.Column`, functions defined in :py:mod:`pyspark.sql.functions` and Scala ``UserDefinedFunctions``. Python ``UserDefinedFunctions`` are not supported (`SPARK-27052 <https://issues.apache.org/jira/browse/SPARK-27052>`__). .. versionadded:: 3.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression initialValue : :class:`~pyspark.sql.Column` or str initial value. Name of column or expression merge : function a binary function ``(acc: Column, x: Column) -> Column...`` returning expression of the same type as ``zero`` finish : function an optional unary function ``(x: Column) -> Column: ...`` used to convert accumulated value. Returns ------- :class:`~pyspark.sql.Column` Examples -------- >>> df = spark.createDataFrame([(1, [20.0, 4.0, 2.0, 6.0, 10.0])], ("id", "values")) >>> df.select(aggregate("values", lit(0.0), lambda acc, x: acc + x).alias("sum")).show() +----+ | sum| +----+ |42.0| +----+ >>> def merge(acc, x): ... count = acc.count + 1 ... sum = acc.sum + x ... return struct(count.alias("count"), sum.alias("sum")) >>> df.select( ... aggregate( ... "values", ... struct(lit(0).alias("count"), lit(0.0).alias("sum")), ... merge, ... lambda acc: acc.sum / acc.count, ... ).alias("mean") ... ).show() +----+ |mean| +----+ | 8.4| +----+ """ if finish is not None: return _invoke_higher_order_function("ArrayAggregate", [col, initialValue], [merge, finish]) else: return _invoke_higher_order_function("ArrayAggregate", [col, initialValue], [merge]) [docs]def zip_with( left: "ColumnOrName", right: "ColumnOrName", f: Callable[[Column, Column], Column], ) -> Column: """ Merge two given arrays, element-wise, into a single array using a function. If one array is shorter, nulls are appended at the end to match the length of the longer array, before applying the function. .. versionadded:: 3.1.0 Parameters ---------- left : :class:`~pyspark.sql.Column` or str name of the first column or expression right : :class:`~pyspark.sql.Column` or str name of the second column or expression f : function a binary function ``(x1: Column, x2: Column) -> Column...`` Can use methods of :class:`~pyspark.sql.Column`, functions defined in :py:mod:`pyspark.sql.functions` and Scala ``UserDefinedFunctions``. Python ``UserDefinedFunctions`` are not supported (`SPARK-27052 <https://issues.apache.org/jira/browse/SPARK-27052>`__). Returns ------- :class:`~pyspark.sql.Column` Examples -------- >>> df = spark.createDataFrame([(1, [1, 3, 5, 8], [0, 2, 4, 6])], ("id", "xs", "ys")) >>> df.select(zip_with("xs", "ys", lambda x, y: x ** y).alias("powers")).show(truncate=False) +---------------------------+ |powers | +---------------------------+ |[1.0, 9.0, 625.0, 262144.0]| +---------------------------+ >>> df = spark.createDataFrame([(1, ["foo", "bar"], [1, 2, 3])], ("id", "xs", "ys")) >>> df.select(zip_with("xs", "ys", lambda x, y: concat_ws("_", x, y)).alias("xs_ys")).show() +-----------------+ | xs_ys| +-----------------+ |[foo_1, bar_2, 3]| +-----------------+ """ return _invoke_higher_order_function("ZipWith", [left, right], [f]) [docs]def transform_keys(col: "ColumnOrName", f: Callable[[Column, Column], Column]) -> Column: """ Applies a function to every key-value pair in a map and returns a map with the results of those applications as the new keys for the pairs. .. versionadded:: 3.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression f : function a binary function ``(k: Column, v: Column) -> Column...`` Can use methods of :class:`~pyspark.sql.Column`, functions defined in :py:mod:`pyspark.sql.functions` and Scala ``UserDefinedFunctions``. Python ``UserDefinedFunctions`` are not supported (`SPARK-27052 <https://issues.apache.org/jira/browse/SPARK-27052>`__). Returns ------- :class:`~pyspark.sql.Column` Examples -------- >>> df = spark.createDataFrame([(1, {"foo": -2.0, "bar": 2.0})], ("id", "data")) >>> df.select(transform_keys( ... "data", lambda k, _: upper(k)).alias("data_upper") ... ).show(truncate=False) +-------------------------+ |data_upper | +-------------------------+ |{BAR -> 2.0, FOO -> -2.0}| +-------------------------+ """ return _invoke_higher_order_function("TransformKeys", [col], [f]) [docs]def transform_values(col: "ColumnOrName", f: Callable[[Column, Column], Column]) -> Column: """ Applies a function to every key-value pair in a map and returns a map with the results of those applications as the new values for the pairs. .. versionadded:: 3.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression f : function a binary function ``(k: Column, v: Column) -> Column...`` Can use methods of :class:`~pyspark.sql.Column`, functions defined in :py:mod:`pyspark.sql.functions` and Scala ``UserDefinedFunctions``. Python ``UserDefinedFunctions`` are not supported (`SPARK-27052 <https://issues.apache.org/jira/browse/SPARK-27052>`__). Returns ------- :class:`~pyspark.sql.Column` Examples -------- >>> df = spark.createDataFrame([(1, {"IT": 10.0, "SALES": 2.0, "OPS": 24.0})], ("id", "data")) >>> df.select(transform_values( ... "data", lambda k, v: when(k.isin("IT", "OPS"), v + 10.0).otherwise(v) ... ).alias("new_data")).show(truncate=False) +---------------------------------------+ |new_data | +---------------------------------------+ |{OPS -> 34.0, IT -> 20.0, SALES -> 2.0}| +---------------------------------------+ """ return _invoke_higher_order_function("TransformValues", [col], [f]) [docs]def map_filter(col: "ColumnOrName", f: Callable[[Column, Column], Column]) -> Column: """ Returns a map whose key-value pairs satisfy a predicate. .. versionadded:: 3.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression f : function a binary function ``(k: Column, v: Column) -> Column...`` Can use methods of :class:`~pyspark.sql.Column`, functions defined in :py:mod:`pyspark.sql.functions` and Scala ``UserDefinedFunctions``. Python ``UserDefinedFunctions`` are not supported (`SPARK-27052 <https://issues.apache.org/jira/browse/SPARK-27052>`__). Returns ------- :class:`~pyspark.sql.Column` Examples -------- >>> df = spark.createDataFrame([(1, {"foo": 42.0, "bar": 1.0, "baz": 32.0})], ("id", "data")) >>> df.select(map_filter( ... "data", lambda _, v: v > 30.0).alias("data_filtered") ... ).show(truncate=False) +--------------------------+ |data_filtered | +--------------------------+ |{baz -> 32.0, foo -> 42.0}| +--------------------------+ """ return _invoke_higher_order_function("MapFilter", [col], [f]) [docs]def map_zip_with( col1: "ColumnOrName", col2: "ColumnOrName", f: Callable[[Column, Column, Column], Column], ) -> Column: """ Merge two given maps, key-wise into a single map using a function. .. versionadded:: 3.1.0 Parameters ---------- col1 : :class:`~pyspark.sql.Column` or str name of the first column or expression col2 : :class:`~pyspark.sql.Column` or str name of the second column or expression f : function a ternary function ``(k: Column, v1: Column, v2: Column) -> Column...`` Can use methods of :class:`~pyspark.sql.Column`, functions defined in :py:mod:`pyspark.sql.functions` and Scala ``UserDefinedFunctions``. Python ``UserDefinedFunctions`` are not supported (`SPARK-27052 <https://issues.apache.org/jira/browse/SPARK-27052>`__). Returns ------- :class:`~pyspark.sql.Column` Examples -------- >>> df = spark.createDataFrame([ ... (1, {"IT": 24.0, "SALES": 12.00}, {"IT": 2.0, "SALES": 1.4})], ... ("id", "base", "ratio") ... ) >>> df.select(map_zip_with( ... "base", "ratio", lambda k, v1, v2: round(v1 * v2, 2)).alias("updated_data") ... ).show(truncate=False) +---------------------------+ |updated_data | +---------------------------+ |{SALES -> 16.8, IT -> 48.0}| +---------------------------+ """ return _invoke_higher_order_function("MapZipWith", [col1, col2], [f]) # ---------------------- Partition transform functions -------------------------------- [docs]def years(col: "ColumnOrName") -> Column: """ Partition transform function: A transform for timestamps and dates to partition data into years. .. versionadded:: 3.1.0 Examples -------- >>> df.writeTo("catalog.db.table").partitionedBy( # doctest: +SKIP ... years("ts") ... ).createOrReplace() Notes ----- This function can be used only in combination with :py:meth:`~pyspark.sql.readwriter.DataFrameWriterV2.partitionedBy` method of the `DataFrameWriterV2`. """ return _invoke_function_over_columns("years", col) [docs]def months(col: "ColumnOrName") -> Column: """ Partition transform function: A transform for timestamps and dates to partition data into months. .. versionadded:: 3.1.0 Examples -------- >>> df.writeTo("catalog.db.table").partitionedBy( ... months("ts") ... ).createOrReplace() # doctest: +SKIP Notes ----- This function can be used only in combination with :py:meth:`~pyspark.sql.readwriter.DataFrameWriterV2.partitionedBy` method of the `DataFrameWriterV2`. """ return _invoke_function_over_columns("months", col) [docs]def days(col: "ColumnOrName") -> Column: """ Partition transform function: A transform for timestamps and dates to partition data into days. .. versionadded:: 3.1.0 Examples -------- >>> df.writeTo("catalog.db.table").partitionedBy( # doctest: +SKIP ... days("ts") ... ).createOrReplace() Notes ----- This function can be used only in combination with :py:meth:`~pyspark.sql.readwriter.DataFrameWriterV2.partitionedBy` method of the `DataFrameWriterV2`. """ return _invoke_function_over_columns("days", col) [docs]def hours(col: "ColumnOrName") -> Column: """ Partition transform function: A transform for timestamps to partition data into hours. .. versionadded:: 3.1.0 Examples -------- >>> df.writeTo("catalog.db.table").partitionedBy( # doctest: +SKIP ... hours("ts") ... ).createOrReplace() Notes ----- This function can be used only in combination with :py:meth:`~pyspark.sql.readwriter.DataFrameWriterV2.partitionedBy` method of the `DataFrameWriterV2`. """ return _invoke_function_over_columns("hours", col) [docs]def bucket(numBuckets: Union[Column, int], col: "ColumnOrName") -> Column: """ Partition transform function: A transform for any type that partitions by a hash of the input column. .. versionadded:: 3.1.0 Examples -------- >>> df.writeTo("catalog.db.table").partitionedBy( # doctest: +SKIP ... bucket(42, "ts") ... ).createOrReplace() Notes ----- This function can be used only in combination with :py:meth:`~pyspark.sql.readwriter.DataFrameWriterV2.partitionedBy` method of the `DataFrameWriterV2`. """ if not isinstance(numBuckets, (int, Column)): raise TypeError("numBuckets should be a Column or an int, got {}".format(type(numBuckets))) sc = SparkContext._active_spark_context assert sc is not None and sc._jvm is not None numBuckets = ( _create_column_from_literal(numBuckets) if isinstance(numBuckets, int) else _to_java_column(numBuckets) ) return _invoke_function("bucket", numBuckets, _to_java_column(col)) # ---------------------------- User Defined Function ---------------------------------- @overload def udf( f: Callable[..., Any], returnType: "DataTypeOrString" = StringType() ) -> "UserDefinedFunctionLike": ... @overload def udf( f: Optional["DataTypeOrString"] = None, ) -> Callable[[Callable[..., Any]], "UserDefinedFunctionLike"]: ... @overload def udf( *, returnType: "DataTypeOrString" = StringType(), ) -> Callable[[Callable[..., Any]], "UserDefinedFunctionLike"]: ... [docs]def udf( f: Optional[Union[Callable[..., Any], "DataTypeOrString"]] = None, returnType: "DataTypeOrString" = StringType(), ) -> Union["UserDefinedFunctionLike", Callable[[Callable[..., Any]], "UserDefinedFunctionLike"]]: """Creates a user defined function (UDF). .. versionadded:: 1.3.0 Parameters ---------- f : function python function if used as a standalone function returnType : :class:`pyspark.sql.types.DataType` or str the return type of the user-defined function. The value can be either a :class:`pyspark.sql.types.DataType` object or a DDL-formatted type string. Examples -------- >>> from pyspark.sql.types import IntegerType >>> slen = udf(lambda s: len(s), IntegerType()) >>> @udf ... def to_upper(s): ... if s is not None: ... return s.upper() ... >>> @udf(returnType=IntegerType()) ... def add_one(x): ... if x is not None: ... return x + 1 ... >>> df = spark.createDataFrame([(1, "John Doe", 21)], ("id", "name", "age")) >>> df.select(slen("name").alias("slen(name)"), to_upper("name"), add_one("age")).show() +----------+--------------+------------+ |slen(name)|to_upper(name)|add_one(age)| +----------+--------------+------------+ | 8| JOHN DOE| 22| +----------+--------------+------------+ Notes ----- The user-defined functions are considered deterministic by default. Due to optimization, duplicate invocations may be eliminated or the function may even be invoked more times than it is present in the query. If your function is not deterministic, call `asNondeterministic` on the user defined function. E.g.: >>> from pyspark.sql.types import IntegerType >>> import random >>> random_udf = udf(lambda: int(random.random() * 100), IntegerType()).asNondeterministic() The user-defined functions do not support conditional expressions or short circuiting in boolean expressions and it ends up with being executed all internally. If the functions can fail on special rows, the workaround is to incorporate the condition into the functions. The user-defined functions do not take keyword arguments on the calling side. """ # The following table shows most of Python data and SQL type conversions in normal UDFs that # are not yet visible to the user. Some of behaviors are buggy and might be changed in the near # future. The table might have to be eventually documented externally. # Please see SPARK-28131's PR to see the codes in order to generate the table below. # # +-----------------------------+--------------+----------+------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+----------------------------+------------+--------------+------------------+----------------------+ # noqa # |SQL Type \ Python Value(Type)|None(NoneType)|True(bool)|1(int)| a(str)| 1970-01-01(date)|1970-01-01 00:00:00(datetime)|1.0(float)|array('i', [1])(array)|[1](list)| (1,)(tuple)|bytearray(b'ABC')(bytearray)| 1(Decimal)|{'a': 1}(dict)|Row(kwargs=1)(Row)|Row(namedtuple=1)(Row)| # noqa # +-----------------------------+--------------+----------+------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+----------------------------+------------+--------------+------------------+----------------------+ # noqa # | boolean| None| True| None| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | tinyint| None| None| 1| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | smallint| None| None| 1| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | int| None| None| 1| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | bigint| None| None| 1| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | string| None| 'true'| '1'| 'a'|'java.util.Gregor...| 'java.util.Gregor...| '1.0'| '[I@66cbb73a'| '[1]'|'[Ljava.lang.Obje...| '[B@5a51eb1a'| '1'| '{a=1}'| X| X| # noqa # | date| None| X| X| X|datetime.date(197...| datetime.date(197...| X| X| X| X| X| X| X| X| X| # noqa # | timestamp| None| X| X| X| X| datetime.datetime...| X| X| X| X| X| X| X| X| X| # noqa # | float| None| None| None| None| None| None| 1.0| None| None| None| None| None| None| X| X| # noqa # | double| None| None| None| None| None| None| 1.0| None| None| None| None| None| None| X| X| # noqa # | array<int>| None| None| None| None| None| None| None| [1]| [1]| [1]| [65, 66, 67]| None| None| X| X| # noqa # | binary| None| None| None|bytearray(b'a')| None| None| None| None| None| None| bytearray(b'ABC')| None| None| X| X| # noqa # | decimal(10,0)| None| None| None| None| None| None| None| None| None| None| None|Decimal('1')| None| X| X| # noqa # | map<string,int>| None| None| None| None| None| None| None| None| None| None| None| None| {'a': 1}| X| X| # noqa # | struct<_1:int>| None| X| X| X| X| X| X| X|Row(_1=1)| Row(_1=1)| X| X| Row(_1=None)| Row(_1=1)| Row(_1=1)| # noqa # +-----------------------------+--------------+----------+------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+----------------------------+------------+--------------+------------------+----------------------+ # noqa # # Note: DDL formatted string is used for 'SQL Type' for simplicity. This string can be # used in `returnType`. # Note: The values inside of the table are generated by `repr`. # Note: 'X' means it throws an exception during the conversion. # Note: Python 3.7.3 is used. # decorator @udf, @udf(), @udf(dataType()) if f is None or isinstance(f, (str, DataType)): # If DataType has been passed as a positional argument # for decorator use it as a returnType return_type = f or returnType return functools.partial( _create_udf, returnType=return_type, evalType=PythonEvalType.SQL_BATCHED_UDF ) else: return _create_udf(f=f, returnType=returnType, evalType=PythonEvalType.SQL_BATCHED_UDF) def _test() -> None: import doctest from pyspark.sql import Row, SparkSession import pyspark.sql.functions globs = pyspark.sql.functions.__dict__.copy() spark = SparkSession.builder.master("local[4]").appName("sql.functions tests").getOrCreate() sc = spark.sparkContext globs["sc"] = sc globs["spark"] = spark globs["df"] = spark.createDataFrame([Row(age=2, name="Alice"), Row(age=5, name="Bob")]) (failure_count, test_count) = doctest.testmod( pyspark.sql.functions, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE, ) spark.stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()