pyspark.pandas.
notna
Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. NA values, such as None or numpy.NaN, get mapped to False values.
numpy.NaN
Mask of bool values for each element that indicates whether an element is not an NA value.
See also
isna
Detect missing values for an array-like object.
Series.notna
Boolean inverse of Series.isna.
DataFrame.notnull
Boolean inverse of DataFrame.isnull.
Index.notna
Boolean inverse of Index.isna.
Index.notnull
Boolean inverse of Index.isnull.
Examples
Show which entries in a DataFrame are not NA.
>>> df = ps.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker
>>> df.notnull() age born name toy 0 True False True False 1 True True True True 2 False True True True
Show which entries in a Series are not NA.
>>> ser = ps.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64
>>> ps.notna(ser) 0 True 1 True 2 False dtype: bool
>>> ps.notna(ser.index) True