Source code for pyspark.ml.pipeline

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os

from typing import Any, Dict, List, Optional, Tuple, Type, Union, cast, TYPE_CHECKING

from pyspark import keyword_only, since
from pyspark.ml.base import Estimator, Model, Transformer
from pyspark.ml.param import Param, Params
from pyspark.ml.util import (
    MLReadable,
    MLWritable,
    JavaMLWriter,
    JavaMLReader,
    DefaultParamsReader,
    DefaultParamsWriter,
    MLWriter,
    MLReader,
    JavaMLReadable,
    JavaMLWritable,
)
from pyspark.ml.wrapper import JavaParams
from pyspark.ml.common import inherit_doc
from pyspark.sql.dataframe import DataFrame

if TYPE_CHECKING:
    from pyspark.ml._typing import ParamMap, PipelineStage
    from py4j.java_gateway import JavaObject
    from pyspark.core.context import SparkContext


[docs]@inherit_doc class Pipeline(Estimator["PipelineModel"], MLReadable["Pipeline"], MLWritable): """ A simple pipeline, which acts as an estimator. A Pipeline consists of a sequence of stages, each of which is either an :py:class:`Estimator` or a :py:class:`Transformer`. When :py:meth:`Pipeline.fit` is called, the stages are executed in order. If a stage is an :py:class:`Estimator`, its :py:meth:`Estimator.fit` method will be called on the input dataset to fit a model. Then the model, which is a transformer, will be used to transform the dataset as the input to the next stage. If a stage is a :py:class:`Transformer`, its :py:meth:`Transformer.transform` method will be called to produce the dataset for the next stage. The fitted model from a :py:class:`Pipeline` is a :py:class:`PipelineModel`, which consists of fitted models and transformers, corresponding to the pipeline stages. If stages is an empty list, the pipeline acts as an identity transformer. .. versionadded:: 1.3.0 """ stages: Param[List["PipelineStage"]] = Param( Params._dummy(), "stages", "a list of pipeline stages" ) _input_kwargs: Dict[str, Any] @keyword_only def __init__(self, *, stages: Optional[List["PipelineStage"]] = None): """ __init__(self, \\*, stages=None) """ super(Pipeline, self).__init__() kwargs = self._input_kwargs self.setParams(**kwargs)
[docs] def setStages(self, value: List["PipelineStage"]) -> "Pipeline": """ Set pipeline stages. .. versionadded:: 1.3.0 Parameters ---------- value : list of :py:class:`pyspark.ml.Transformer` or :py:class:`pyspark.ml.Estimator` Returns ------- :py:class:`Pipeline` the pipeline instance """ return self._set(stages=value)
[docs] @since("1.3.0") def getStages(self) -> List["PipelineStage"]: """ Get pipeline stages. """ return self.getOrDefault(self.stages)
[docs] @keyword_only @since("1.3.0") def setParams(self, *, stages: Optional[List["PipelineStage"]] = None) -> "Pipeline": """ setParams(self, \\*, stages=None) Sets params for Pipeline. """ kwargs = self._input_kwargs return self._set(**kwargs)
def _fit(self, dataset: DataFrame) -> "PipelineModel": stages = self.getStages() for stage in stages: if not (isinstance(stage, Estimator) or isinstance(stage, Transformer)): raise TypeError("Cannot recognize a pipeline stage of type %s." % type(stage)) indexOfLastEstimator = -1 for i, stage in enumerate(stages): if isinstance(stage, Estimator): indexOfLastEstimator = i transformers: List[Transformer] = [] for i, stage in enumerate(stages): if i <= indexOfLastEstimator: if isinstance(stage, Transformer): transformers.append(stage) dataset = stage.transform(dataset) else: # must be an Estimator model = stage.fit(dataset) transformers.append(model) if i < indexOfLastEstimator: dataset = model.transform(dataset) else: transformers.append(cast(Transformer, stage)) return PipelineModel(transformers)
[docs] def copy(self, extra: Optional["ParamMap"] = None) -> "Pipeline": """ Creates a copy of this instance. .. versionadded:: 1.4.0 Parameters ---------- extra : dict, optional extra parameters Returns ------- :py:class:`Pipeline` new instance """ if extra is None: extra = dict() that = Params.copy(self, extra) stages = [stage.copy(extra) for stage in that.getStages()] return that.setStages(stages)
[docs] @since("2.0.0") def write(self) -> MLWriter: """Returns an MLWriter instance for this ML instance.""" allStagesAreJava = PipelineSharedReadWrite.checkStagesForJava(self.getStages()) if allStagesAreJava: return JavaMLWriter(self) # type: ignore[arg-type] return PipelineWriter(self)
[docs] @classmethod @since("2.0.0") def read(cls) -> "PipelineReader": """Returns an MLReader instance for this class.""" return PipelineReader(cls)
@classmethod def _from_java(cls, java_stage: "JavaObject") -> "Pipeline": """ Given a Java Pipeline, create and return a Python wrapper of it. Used for ML persistence. """ # Create a new instance of this stage. py_stage = cls() # Load information from java_stage to the instance. py_stages: List["PipelineStage"] = [ JavaParams._from_java(s) for s in java_stage.getStages() ] py_stage.setStages(py_stages) py_stage._resetUid(java_stage.uid()) return py_stage def _to_java(self) -> "JavaObject": """ Transfer this instance to a Java Pipeline. Used for ML persistence. Returns ------- py4j.java_gateway.JavaObject Java object equivalent to this instance. """ from pyspark.core.context import SparkContext gateway = SparkContext._gateway assert gateway is not None and SparkContext._jvm is not None cls = SparkContext._jvm.org.apache.spark.ml.PipelineStage java_stages = gateway.new_array(cls, len(self.getStages())) for idx, stage in enumerate(self.getStages()): java_stages[idx] = cast(JavaParams, stage)._to_java() _java_obj = JavaParams._new_java_obj("org.apache.spark.ml.Pipeline", self.uid) _java_obj.setStages(java_stages) return _java_obj
@inherit_doc class PipelineWriter(MLWriter): """ (Private) Specialization of :py:class:`MLWriter` for :py:class:`Pipeline` types """ def __init__(self, instance: Pipeline): super(PipelineWriter, self).__init__() self.instance = instance def saveImpl(self, path: str) -> None: stages = self.instance.getStages() PipelineSharedReadWrite.validateStages(stages) PipelineSharedReadWrite.saveImpl(self.instance, stages, self.sc, path) @inherit_doc class PipelineReader(MLReader[Pipeline]): """ (Private) Specialization of :py:class:`MLReader` for :py:class:`Pipeline` types """ def __init__(self, cls: Type[Pipeline]): super(PipelineReader, self).__init__() self.cls = cls def load(self, path: str) -> Pipeline: metadata = DefaultParamsReader.loadMetadata(path, self.sc) if "language" not in metadata["paramMap"] or metadata["paramMap"]["language"] != "Python": return JavaMLReader(cast(Type["JavaMLReadable[Pipeline]"], self.cls)).load(path) else: uid, stages = PipelineSharedReadWrite.load(metadata, self.sc, path) return Pipeline(stages=stages)._resetUid(uid) @inherit_doc class PipelineModelWriter(MLWriter): """ (Private) Specialization of :py:class:`MLWriter` for :py:class:`PipelineModel` types """ def __init__(self, instance: "PipelineModel"): super(PipelineModelWriter, self).__init__() self.instance = instance def saveImpl(self, path: str) -> None: stages = self.instance.stages PipelineSharedReadWrite.validateStages(cast(List["PipelineStage"], stages)) PipelineSharedReadWrite.saveImpl( self.instance, cast(List["PipelineStage"], stages), self.sc, path ) @inherit_doc class PipelineModelReader(MLReader["PipelineModel"]): """ (Private) Specialization of :py:class:`MLReader` for :py:class:`PipelineModel` types """ def __init__(self, cls: Type["PipelineModel"]): super(PipelineModelReader, self).__init__() self.cls = cls def load(self, path: str) -> "PipelineModel": metadata = DefaultParamsReader.loadMetadata(path, self.sc) if "language" not in metadata["paramMap"] or metadata["paramMap"]["language"] != "Python": return JavaMLReader(cast(Type["JavaMLReadable[PipelineModel]"], self.cls)).load(path) else: uid, stages = PipelineSharedReadWrite.load(metadata, self.sc, path) return PipelineModel(stages=cast(List[Transformer], stages))._resetUid(uid)
[docs]@inherit_doc class PipelineModel(Model, MLReadable["PipelineModel"], MLWritable): """ Represents a compiled pipeline with transformers and fitted models. .. versionadded:: 1.3.0 """ def __init__(self, stages: List[Transformer]): super(PipelineModel, self).__init__() self.stages = stages def _transform(self, dataset: DataFrame) -> DataFrame: for t in self.stages: dataset = t.transform(dataset) return dataset
[docs] def copy(self, extra: Optional["ParamMap"] = None) -> "PipelineModel": """ Creates a copy of this instance. .. versionadded:: 1.4.0 :param extra: extra parameters :returns: new instance """ if extra is None: extra = dict() stages = [stage.copy(extra) for stage in self.stages] return PipelineModel(stages)
[docs] @since("2.0.0") def write(self) -> MLWriter: """Returns an MLWriter instance for this ML instance.""" allStagesAreJava = PipelineSharedReadWrite.checkStagesForJava( cast(List["PipelineStage"], self.stages) ) if allStagesAreJava: return JavaMLWriter(self) # type: ignore[arg-type] return PipelineModelWriter(self)
[docs] @classmethod @since("2.0.0") def read(cls) -> PipelineModelReader: """Returns an MLReader instance for this class.""" return PipelineModelReader(cls)
@classmethod def _from_java(cls, java_stage: "JavaObject") -> "PipelineModel": """ Given a Java PipelineModel, create and return a Python wrapper of it. Used for ML persistence. """ # Load information from java_stage to the instance. py_stages: List[Transformer] = [JavaParams._from_java(s) for s in java_stage.stages()] # Create a new instance of this stage. py_stage = cls(py_stages) py_stage._resetUid(java_stage.uid()) return py_stage def _to_java(self) -> "JavaObject": """ Transfer this instance to a Java PipelineModel. Used for ML persistence. :return: Java object equivalent to this instance. """ from pyspark.core.context import SparkContext gateway = SparkContext._gateway assert gateway is not None and SparkContext._jvm is not None cls = SparkContext._jvm.org.apache.spark.ml.Transformer java_stages = gateway.new_array(cls, len(self.stages)) for idx, stage in enumerate(self.stages): java_stages[idx] = cast(JavaParams, stage)._to_java() _java_obj = JavaParams._new_java_obj( "org.apache.spark.ml.PipelineModel", self.uid, java_stages ) return _java_obj
@inherit_doc class PipelineSharedReadWrite: """ Functions for :py:class:`MLReader` and :py:class:`MLWriter` shared between :py:class:`Pipeline` and :py:class:`PipelineModel` .. versionadded:: 2.3.0 """ @staticmethod def checkStagesForJava(stages: List["PipelineStage"]) -> bool: return all(isinstance(stage, JavaMLWritable) for stage in stages) @staticmethod def validateStages(stages: List["PipelineStage"]) -> None: """ Check that all stages are Writable """ for stage in stages: if not isinstance(stage, MLWritable): raise ValueError( "Pipeline write will fail on this pipeline " + "because stage %s of type %s is not MLWritable", stage.uid, type(stage), ) @staticmethod def saveImpl( instance: Union[Pipeline, PipelineModel], stages: List["PipelineStage"], sc: "SparkContext", path: str, ) -> None: """ Save metadata and stages for a :py:class:`Pipeline` or :py:class:`PipelineModel` - save metadata to path/metadata - save stages to stages/IDX_UID """ stageUids = [stage.uid for stage in stages] jsonParams = {"stageUids": stageUids, "language": "Python"} DefaultParamsWriter.saveMetadata(instance, path, sc, paramMap=jsonParams) stagesDir = os.path.join(path, "stages") for index, stage in enumerate(stages): cast(MLWritable, stage).write().save( PipelineSharedReadWrite.getStagePath(stage.uid, index, len(stages), stagesDir) ) @staticmethod def load( metadata: Dict[str, Any], sc: "SparkContext", path: str ) -> Tuple[str, List["PipelineStage"]]: """ Load metadata and stages for a :py:class:`Pipeline` or :py:class:`PipelineModel` Returns ------- tuple (UID, list of stages) """ stagesDir = os.path.join(path, "stages") stageUids = metadata["paramMap"]["stageUids"] stages = [] for index, stageUid in enumerate(stageUids): stagePath = PipelineSharedReadWrite.getStagePath( stageUid, index, len(stageUids), stagesDir ) stage: "PipelineStage" = DefaultParamsReader.loadParamsInstance(stagePath, sc) stages.append(stage) return (metadata["uid"], stages) @staticmethod def getStagePath(stageUid: str, stageIdx: int, numStages: int, stagesDir: str) -> str: """ Get path for saving the given stage. """ stageIdxDigits = len(str(numStages)) stageDir = str(stageIdx).zfill(stageIdxDigits) + "_" + stageUid stagePath = os.path.join(stagesDir, stageDir) return stagePath