
Internet Engineering Task Force (IETF) Y. Sheffer
Request for Comments: 6124 Independent
Category: Informational G. Zorn
ISSN: 2070-1721 Network Zen
 H. Tschofenig
 Nokia Siemens Networks
 S. Fluhrer
 Cisco
 February 2011

 An EAP Authentication Method Based on
 the Encrypted Key Exchange (EKE) Protocol

Abstract

 The Extensible Authentication Protocol (EAP) describes a framework
 that allows the use of multiple authentication mechanisms. This
 document defines an authentication mechanism for EAP called EAP-EKE,
 based on the Encrypted Key Exchange (EKE) protocol. This method
 provides mutual authentication through the use of a short, easy to
 remember password. Compared with other common authentication
 methods, EAP-EKE is not susceptible to dictionary attacks. Neither
 does it require the availability of public-key certificates.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6124.

Sheffer, et al. Informational [Page 1]

RFC 6124 The EAP-EKE Method February 2011

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Sheffer, et al. Informational [Page 2]

RFC 6124 The EAP-EKE Method February 2011

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Protocol . 4
 3.1. Message Flows . 4
 4. Message Formats . 7
 4.1. EAP-EKE Header . 7
 4.2. EAP-EKE Payloads . 8
 4.2.1. The EAP-EKE-ID Payload 8
 4.2.2. The EAP-EKE-Commit Payload 10
 4.2.3. The EAP-EKE-Confirm Payload 11
 4.2.4. The EAP-EKE-Failure Payload 12
 4.3. Protected Fields . 13
 4.4. Encrypted Fields . 14
 4.5. Channel Binding Values 14
 5. Protocol Sequence . 15
 5.1. EAP-EKE-Commit/Request 15
 5.2. EAP-EKE-Commit/Response 17
 5.3. EAP-EKE-Confirm/Request 18
 5.4. EAP-EKE-Confirm/Response 18
 5.5. MSK and EMSK . 19
 6. Cryptographic Details . 19
 6.1. Generating Keying Material 19
 6.2. Diffie-Hellman Groups 20
 6.3. Mandatory Algorithms 20
 7. IANA Considerations . 21
 8. Security Considerations 24
 8.1. Cryptographic Analysis 27
 8.2. Diffie-Hellman Group Considerations 28
 8.3. Resistance to Active Attacks 28
 8.4. Identity Protection, Anonymity, and Pseudonymity 28
 8.5. Password Processing and Long-Term Storage 29
 9. Acknowledgements . 29
 10. References . 29
 10.1. Normative References 29
 10.2. Informative References 31

1. Introduction

 The predominant access method for the Internet today is that of a
 human using a username and password to authenticate to a computer
 enforcing access control. Proof of knowledge of the password
 authenticates the human to the computer.

 Typically, these passwords are not stored on a user’s computer for
 security reasons and must be entered each time the human desires
 network access. Therefore, the passwords must be ones that can be

Sheffer, et al. Informational [Page 3]

RFC 6124 The EAP-EKE Method February 2011

 repeatedly entered by a human with a low probability of error. They
 will likely not possess high entropy and it may be assumed that an
 adversary with access to a dictionary will have the ability to guess
 a user’s password. It is therefore desirable to have a robust
 authentication method that is secure even when used with a weak
 password in the presence of a strong adversary.

 EAP-EKE is an EAP method [RFC3748] that addresses the problem of
 password-based authenticated key exchange, using a possibly weak
 password for authentication and to derive an authenticated and
 cryptographically strong shared secret. This problem was first
 described by Bellovin and Merritt in [BM92] and [BM93].
 Subsequently, a number of other solution approaches have been
 proposed, for example [JAB96], [LUC97], [BMP00], and others.

 This proposal is based on the original Encrypted Key Exchange (EKE)
 proposal, as described in [BM92]. Some of the variants of the
 original EKE have been attacked, see e.g., [PA97], and improvements
 have been proposed. None of these subsequent improvements have been
 incorporated into the current protocol. However, we have used only
 the subset of [BM92] (namely the variant described in Section 3.1 of
 that paper) that has withstood the test of time and is believed
 secure as of this writing.

2. Terminology

 This document uses Encr(Ke, ...) to denote encrypted information, and
 Prot(Ke, Ki, ...) to denote encrypted and integrity protected
 information.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Protocol

 EAP is a two-party protocol spoken between an EAP peer and an EAP
 server (also known as "authenticator"). An EAP method defines the
 specific authentication protocol being used by EAP. This memo
 defines a particular method and therefore defines the messages sent
 between the EAP server and the EAP peer for the purpose of
 authentication and key derivation.

3.1. Message Flows

 A successful run of EAP-EKE consists of three message exchanges: an
 Identity exchange, a Commit exchange, and a Confirm exchange. This
 is shown in Figure 1.

Sheffer, et al. Informational [Page 4]

RFC 6124 The EAP-EKE Method February 2011

 The peer and server use the EAP-EKE Identity exchange to learn each
 other’s identities and to agree upon a ciphersuite to use in the
 subsequent exchanges. In the Commit exchange, the peer and server
 exchange information to generate a shared key and also to bind each
 other to a particular guess of the password. In the Confirm
 exchange, the peer and server prove liveness and knowledge of the
 password by generating and verifying verification data (note that the
 second message of the Commit exchange already plays an essential part
 in this liveness proof).

 +--------+ +--------+
 | | EAP-EKE-ID/Request | |
 | EAP |<------------------------------------| EAP |
 | peer | | server |
 | (P) | EAP-EKE-ID/Response | (S) |
 | |------------------------------------>| |
 | | | |
 | | EAP-EKE-Commit/Request | |
 | |<------------------------------------| |
 | | | |
 | | EAP-EKE-Commit/Response | |
 | |------------------------------------>| |
 | | | |
 | | EAP-EKE-Confirm/Request | |
 | |<------------------------------------| |
 | | | |
 | | EAP-EKE-Confirm/Response | |
 | |------------------------------------>| |
 | | | |
 | | EAP-Success | |
 | |<------------------------------------| |
 +--------+ +--------+

 Figure 1: A Successful EAP-EKE Exchange

 Schematically, the original exchange as described in [BM92] (and with
 the roles reversed) is:

 Server Peer
 ------ ----

 Encr(Password, y_s) ->

 <- Encr(Password, y_p), Encr(SharedSecret, Nonce_P)

 Encr(SharedSecret, Nonce_S | Nonce_P) ->

 <- Encr(SharedSecret, Nonce_S)

Sheffer, et al. Informational [Page 5]

RFC 6124 The EAP-EKE Method February 2011

 Where:

 o Password is a typically short string, shared between the server
 and the peer. In other words, the same password is used to
 authenticate the server to the peer, and vice versa.

 o y_s and y_p are the server’s and the peer’s, respectively,
 ephemeral public key, i.e., y_s = g ^ x_s (mod p) and
 y_p = g ^ x_p (mod p).

 o Nonce_S, Nonce_P are random strings generated by the server and
 the peer as cryptographic challenges.

 o SharedSecret is the secret created by the Diffie-Hellman
 algorithm, namely SharedSecret = g^(x_s * x_p) (mod p). This
 value is calculated by the server as: SharedSecret = y_p ^ x_s
 (mod p), and by the peer as: SharedSecret = y_s ^ x_p (mod p).

 The current protocol extends the basic cryptographic protocol, and
 the regular successful exchange becomes:

 Message Server Peer
 --------- -------- ------
 ID/Request ID_S, CryptoProposals ->

 ID/Response <- ID_P, CryptoSelection

 Commit/Request Encr(Password, y_s) ->

 Commit/Response <- Encr(Password, y_p), Prot(Ke, Ki, Nonce_P)

 Confirm/Request Prot(Ke, Ki, Nonce_S | Nonce_P), Auth_S ->

 Confirm/Response <- Prot(Ke, Ki, Nonce_S), Auth_P

 Where, in addition to the above terminology:

 o Encr means encryption only, and Prot is encryption with integrity
 protection.

 o Ke is an encryption key, and Ki is an integrity-protection key.

 Section 5 explains the various cryptographic values and how they are
 derived.

Sheffer, et al. Informational [Page 6]

RFC 6124 The EAP-EKE Method February 2011

 As shown in the exchange above, the following information elements
 have been added to the original protocol: identity values for both
 protocol parties (ID_S, ID_P), negotiation of cryptographic
 protocols, and signature fields to protect the integrity of the
 negotiated parameters (Auth_S, Auth_P). In addition, the shared
 secret is not used directly. In this initial exposition, a few
 details were omitted for clarity. Section 5 should be considered as
 authoritative regarding message and field details.

4. Message Formats

 EAP-EKE defines a small number of message types, each message
 consisting of a header followed by a payload. This section defines
 the header, several payload formats, as well as the format of
 specific fields within the payloads.

 As usual, all multi-octet strings MUST be laid out in network byte
 order.

4.1. EAP-EKE Header

 The EAP-EKE header consists of the standard EAP header (see Section 4
 of [RFC3748]), followed by an EAP-EKE exchange type. The header has
 the following structure:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 | Type | EKE-Exch | Data ...
 +-+

 Figure 2: EAP-EKE Header

 The Code, Identifier, Length, and Type fields are all part of the EAP
 header as defined in [RFC3748]. The Type field in the EAP header is
 53 for EAP-EKE Version 1.

 The EKE-Exch (EKE Exchange) field identifies the type of EAP-EKE
 payload encapsulated in the Data field. This document defines the
 following values for the EKE-Exch field:

 o 0x00: Reserved

 o 0x01: EAP-EKE-ID exchange

 o 0x02: EAP-EKE-Commit exchange

Sheffer, et al. Informational [Page 7]

RFC 6124 The EAP-EKE Method February 2011

 o 0x03: EAP-EKE-Confirm exchange

 o 0x04: EAP-EKE-Failure message

 Further values of this EKE-Exch field are available via IANA
 registration (Section 7.7).

4.2. EAP-EKE Payloads

 EAP-EKE messages all contain the EAP-EKE header and information
 encoded in a single payload, which differs for the different
 exchanges.

4.2.1. The EAP-EKE-ID Payload

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | NumProposals | Reserved | Proposal ...
 +-+
 ... Proposal | IDType | Identity ...
 +-+

 Figure 3: EAP-EKE-ID Payload

 The EAP-EKE-ID payload contains the following fields:

 NumProposals:

 The NumProposals field contains the number of Proposal fields
 subsequently contained in the payload. In the EAP-EKE-ID/Request
 message, the NumProposals field MUST NOT be set to zero (0), and
 in the EAP-EKE-ID/Response message, the NumProposals field MUST be
 set to one (1). The offered proposals in the Request are listed
 contiguously in priority order, most preferable first. The
 selected proposal in the Response MUST be fully identical with one
 of the offered proposals.

 Reserved:

 This field MUST be sent as zero, and MUST be ignored by the
 recipient.

Sheffer, et al. Informational [Page 8]

RFC 6124 The EAP-EKE Method February 2011

 Proposal:

 Each proposal consists of four one-octet fields, in this order:

 Group Description:

 This field’s value is taken from the IANA registry for Diffie-
 Hellman groups defined in Section 7.1.

 Encryption:

 This field’s value is taken from the IANA registry for
 encryption algorithms defined in Section 7.2.

 PRF:

 This field’s value is taken from the IANA registry for pseudo-
 random functions defined in Section 7.3.

 MAC:

 This field’s value is taken from the IANA registry for keyed
 message digest algorithms defined in Section 7.4.

 IDType:

 Denotes the Identity Type. This is taken from the IANA registry
 defined in Section 7.5. The server and the peer MAY use different
 identity types. All implementations MUST be able to receive two
 identity types: ID_NAI and ID_FQDN.

 Identity:

 The meaning of the Identity field depends on the values of the
 Code and IDType fields.

 * EAP-EKE-ID/Request: server ID

 * EAP-EKE-ID/Response: peer ID

 The length of the Identity field is computed from the Length field
 in the EAP header. Specifically, its length is

 eap_header_length - 9 - 4 * number_of_proposals.

 This field, like all other fields in this specification, MUST be
 octet-aligned.

Sheffer, et al. Informational [Page 9]

RFC 6124 The EAP-EKE Method February 2011

4.2.2. The EAP-EKE-Commit Payload

 This payload allows both parties to send their encrypted ephemeral
 public key, with the peer also including a Challenge.

 In addition, a small amount of data can be included by the server
 and/or the peer, and used for channel binding. This data is sent
 here unprotected, but is verified later, when it is signed by the
 Auth_S/Auth_P payloads of the EAP-EKE-Confirm exchange.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | DHComponent_S/DHComponent_P ˜
 +-+
 ˜ ˜
 +-+
 | PNonce_P ˜
 +-+
 ˜ ˜
 +-+
 | CBValue (zero or more occurrences) ˜
 +-+
 ˜ ˜
 +-+

 Figure 4: EAP-EKE-Commit Payload

 DHComponent_S/DHComponent_P:

 This field contains the password-encrypted Diffie-Hellman public
 key, which is generated as described in Section 5.1. Its size is
 determined by the group and the encryption algorithm.

 PNonce_P:

 This field only appears in the response, and contains the
 encrypted and integrity-protected challenge value sent by the
 peer. The field’s size is determined by the encryption and MAC
 algorithms being used, since this protocol mandates a fixed nonce
 size for a given choice of algorithms. See Section 5.2.

Sheffer, et al. Informational [Page 10]

RFC 6124 The EAP-EKE Method February 2011

 CBValue:

 This structure MAY be included both in the request and in the
 response, and MAY be repeated multiple times in a single payload.
 See Section 4.5. Each structure contains its own length. The
 field is neither encrypted nor integrity protected, instead it is
 protected by the AUTH payloads in the Confirm exchange.

4.2.3. The EAP-EKE-Confirm Payload

 Using this payload, both parties complete the authentication by
 generating a shared temporary key, authenticating the entire
 protocol, and generating key material for the EAP consumer protocol.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | PNonce_PS/PNonce_S ˜
 +-+
 ˜ ˜
 +-+
 | Auth_S/Auth_P ˜
 +-+
 ˜ ˜
 +-+

 Figure 5: EAP-EKE-Confirm Payload

 PNonce_PS/PNonce_S:

 This field ("protected nonce") contains the encrypted and
 integrity-protected response to the other party’s challenge; see
 Sections 5.3 and 5.4. Similarly to the PNonce_P field, this
 field’s size is determined by the encryption and MAC algorithms.

 Auth_S/Auth_P:

 This field signs the preceding messages, including the Identity
 and the negotiated fields. This prevents various possible
 attacks, such as algorithm downgrade attacks. See Section 5.3 and
 Section 5.4. The size is determined by the pseudo-random function
 negotiated.

Sheffer, et al. Informational [Page 11]

RFC 6124 The EAP-EKE Method February 2011

4.2.4. The EAP-EKE-Failure Payload

 The EAP-EKE-Failure payload format is defined as follows:
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Failure-Code |
 +-+

 Figure 6: EAP-EKE-Failure Payload

 The payload’s size is always exactly 4 octets.

 The following Failure-Code values are defined:

 +------------+----------------+-------------------------------------+
 | Value | Name | Meaning |
 +------------+----------------+-------------------------------------+
0x00000000	Reserved	
0x00000001	No Error	This code is used for failure
		acknowledgement, see below.
0x00000002	Protocol Error	A failure to parse or understand a
		protocol message or one of its
		payloads.
0x00000003	Password Not	A password could not be located for
	Found	the identity presented by the other
		protocol party, making
		authentication impossible.
0x00000004	Authentication	Failure in the cryptographic
	Failure	computation, most likely caused by
		an incorrect password or an
		inappropriate identity type.
0x00000005	Authorization	While the password being used is
	Failure	correct, the user is not authorized
		to connect.
0x00000006	No Proposal	The peer is unwilling to select any
	Chosen	of the cryptographic proposals
		offered by the server.
 +------------+----------------+-------------------------------------+

 Additional values of this field are available via IANA registration,
 see Section 7.8.

 When the peer encounters an error situation, it MUST respond with
 EAP-EKE-Failure. The server MUST reply with an EAP-Failure message
 to end the exchange.

Sheffer, et al. Informational [Page 12]

RFC 6124 The EAP-EKE Method February 2011

 When the server encounters an error situation, it MUST respond with
 EAP-EKE-Failure. The peer MUST send back an EAP-EKE-Failure message
 containing a "No Error" failure code. Then the server MUST send an
 EAP-Failure message to end the exchange.

 Implementation of the "Password Not Found" code is not mandatory.
 For security reasons, implementations MAY choose to return
 "Authentication Failure" also in cases where the password cannot be
 located.

4.3. Protected Fields

 Several fields are encrypted and integrity-protected. They are
 denoted Prot(...). Their general structure is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Initialization Vector (IV) (optional) |
 +-+
 | Encrypted Data ˜
 +-+
 ˜ ˜
 +-+
 ˜ | Random Padding |
 +-+
 | Integrity Check Value (ICV) |
 +-+

 Figure 7: Protected Field Structure

 The protected field is a concatenation of three octet strings:

 o An optional IV, required when the encryption algorithm/mode
 necessitates it, e.g., for CBC encryption. The content and size
 of this field are determined by the selected encryption algorithm.
 In the case of CBC encryption, this field is a random octet string
 having the same size as the algorithm’s block size.

 o The original data, followed if necessary by random padding. This
 padding has the minimal length (possibly zero) required to
 complete the length of the encrypted data to the encryption
 algorithm’s block size. The original data and the padding are
 encrypted together.

Sheffer, et al. Informational [Page 13]

RFC 6124 The EAP-EKE Method February 2011

 o ICV, a Message Authentication Code (MAC) cryptographic checksum of
 the encrypted data, including the padding. The checksum is
 computed over the encrypted, rather than the plaintext, data. Its
 length is determined by the MAC algorithm negotiated.

 We note that because of the requirement for an explicit ICV, this
 specification does not support authenticated encryption algorithms.
 Such algorithms may be added by a future extension.

4.4. Encrypted Fields

 Two fields are encrypted but are not integrity protected. They are
 denoted Encr(...). Their format is identical to a protected field
 (Section 4.3), except that the Integrity Check Value is omitted.

4.5. Channel Binding Values

 This protocol allows higher-level protocols to transmit limited
 opaque information between the peer and the server. This information
 is integrity protected but not encrypted, and may be used to ensure
 that protocol participants are identical at different protocol
 layers. See Section 7.15 of [RFC3748] for more information on the
 rationale behind this facility.

 EAP-EKE neither validates nor makes any use of the transmitted
 information. The information MUST NOT be used by the consumer
 protocol until it is verified in the EAP-EKE-Confirm exchange
 (specifically, until it is integrity protected by the Auth_S, Auth_P
 payloads). Consequently, it MUST NOT be relied upon in case an error
 occurs at the EAP-EKE level.

 An unknown Channel Binding Value SHOULD be ignored by the recipient.

 Some implementations may require certain values to be present, and
 will abort the protocol if they are not. Such policy is out of scope
 of the current protocol.

Sheffer, et al. Informational [Page 14]

RFC 6124 The EAP-EKE Method February 2011

 Each Channel Binding Value is encoded using a TLV structure:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | CBType | Length |
 +-+
 | Value ...
 +-+

 Figure 8: Channel Binding Value

 CBType:

 This is the Channel Binding Value’s type. This document defines
 the value 0x0000 as reserved. Other values are available for IANA
 allocation, see Section 7.6.

 Length:

 This field is the total length in octets of the structure,
 including the CBType and Length fields.

 This facility should be used with care, since EAP-EKE does not
 provide for message fragmentation. EAP-EKE is not a tunneled method
 and should not be used as a generic transport; specifically,
 implementors should refrain from using the Channel Binding facility
 to transmit posture information, in the sense of [RFC5209].

5. Protocol Sequence

 This section describes the sequence of messages for the Commit and
 Confirm exchanges, and lists the cryptographic operations performed
 by the server and the peer.

5.1. EAP-EKE-Commit/Request

 The server computes:

 y_s = g ^ x_s (mod p),

 where x_s is a randomly chosen number in the range 2 .. p-1. The
 randomly chosen number is the ephemeral private key, and the
 calculated value is the corresponding ephemeral public key. The
 server and the peer MUST both use a fresh, random value for x_s and
 the corresponding x_p on each run of the protocol.

Sheffer, et al. Informational [Page 15]

RFC 6124 The EAP-EKE Method February 2011

 The server computes and transmits the encrypted field (Section 4.4)

 temp = prf(0+, password)

 key = prf+(temp, ID_S | ID_P)

 DHComponent_S = Encr(key, y_s).

 See Section 6.1 for the prf+ notation. The first argument to "prf"
 is a string of zero octets whose length is the output size of the
 base hash algorithm, e.g., 20 octets for HMAC-SHA1; the result is of
 the same length. The first output octets of prf+ are used as the
 encryption key for the negotiated encryption algorithm, according to
 that algorithm’s key length.

 Since the PRF function is required to be an application of the HMAC
 operator to a hash function, the above construction implements HKDF
 as defined in [RFC5869].

 When using block ciphers, it may be necessary to pad y_s on the
 right, to fit the encryption algorithm’s block size. In such cases,
 random padding MUST be used, and this randomness is critical to the
 security of the protocol. Randomness recommendations can be found in
 [RFC4086]; also see [NIST.800-90.2007] for additional recommendations
 on cryptographic-level randomness. When decrypting this field, the
 real length of y_s is determined according to the negotiated Diffie-
 Hellman group.

 If the password needs to be stored on the server, it is RECOMMENDED
 to store a randomized password value as a password-equivalent, rather
 than the cleartext password. We note that implementations may choose
 the output of either of the two steps of the password derivation.
 Using the output of the second step, where the password is salted by
 the identity values, is more secure; however, it may create an
 operational issue if identities are likely to change. See also
 Section 8.5.

 This protocol supports internationalized, non-ASCII passwords. The
 input password string SHOULD be processed according to the rules of
 the [RFC4013] profile of [RFC3454]. A password SHOULD be considered
 a "stored string" per [RFC3454], and unassigned code points are
 therefore prohibited. The output is the binary representation of the
 processed UTF-8 [RFC3629] character string. Prohibited output and
 unassigned code points encountered in SASLprep preprocessing SHOULD
 cause a preprocessing failure and the output SHOULD NOT be used.

Sheffer, et al. Informational [Page 16]

RFC 6124 The EAP-EKE Method February 2011

5.2. EAP-EKE-Commit/Response

 The peer computes:

 y_p = g ^ x_p (mod p)

 Then computes:

 temp = prf(0+, password)

 key = prf+(temp, ID_S | ID_P)

 DHComponent_P = Encr(key, y_p)

 formatted as an encrypted field (Section 4.4).

 Both sides calculate

 SharedSecret = prf(0+, g ^ (x_s * x_p) (mod p))

 The first argument to "prf" is a string of zero octets whose length
 is the output size of the base hash algorithm, e.g., 20 octets for
 HMAC-SHA1; the result is of the same length. This extra application
 of the pseudo-random function is the "extraction step" of [RFC5869].
 Note that the peer needs to compute the SharedSecret value before
 sending out its response.

 The encryption and integrity protection keys are computed:

 Ke | Ki = prf+(SharedSecret, "EAP-EKE Keys" | ID_S | ID_P)

 And the peer generates the Protected Nonce:

 PNonce_P = Prot(Ke, Ki, Nonce_P),

 where Nonce_P is a randomly generated binary string. The length of
 Nonce_P MUST be the maximum of 16 octets, and half the key size of
 the negotiated prf (rounded up to the next octet if necessary). The
 peer constructs this value as a protected field (Section 4.3),
 encrypted using Ke and integrity protected using Ki with the
 negotiated encryption and MAC algorithm.

 The peer now sends a message that contains the two generated fields.

 The server MUST verify the correct integrity protection of the
 received nonce, and MUST abort the protocol if it is incorrect, with
 an "Authentication Failure" code.

Sheffer, et al. Informational [Page 17]

RFC 6124 The EAP-EKE Method February 2011

5.3. EAP-EKE-Confirm/Request

 The server constructs:

 PNonce_PS = Prot(Ke, Ki, Nonce_P | Nonce_S),

 as a protected field, where Nonce_S is a randomly generated string,
 of the same size as Nonce_P.

 It computes:

 Ka = prf+(SharedSecret, "EAP-EKE Ka" | ID_S | ID_P | Nonce_P |
 Nonce_S)

 whose length is the preferred key length of the negotiated prf (see
 Section 5.2). It then constructs:

 Auth_S = prf(Ka, "EAP-EKE server" | EAP-EKE-ID/Request | EAP-EKE-
 ID/Response | EAP-EKE-Commit/Request | EAP-EKE-Commit/Response).

 The messages are included in full, starting with the EAP header, and
 including any possible future extensions.

 This construction of the Auth_S (and Auth_P) value implies that any
 future extensions MUST NOT be added to the EAP-EKE-Confirm/Request or
 EAP-EKE-Confirm/Response messages themselves, unless these extensions
 are integrity-protected in some other manner.

 The server now sends a message that contains the two fields.

 The peer MUST verify the correct integrity protection of the received
 nonces and the correctness of the Auth_S value, and MUST abort the
 protocol if either is incorrect, with an "Authentication Failure"
 code.

5.4. EAP-EKE-Confirm/Response

 The peer computes Ka, and generates:

 PNonce_S = Prot(Ke, Ki, Nonce_S)

 as a protected field. It then computes:

 Auth_P = prf(Ka, "EAP-EKE peer" | EAP-EKE-ID/Request | EAP-EKE-ID/
 Response | EAP-EKE-Commit/Request | EAP-EKE-Commit/Response)

 The peer sends a message that contains the two fields.

Sheffer, et al. Informational [Page 18]

RFC 6124 The EAP-EKE Method February 2011

 The server MUST verify the correct integrity protection of the
 received nonce and the correctness of the Auth_P value, and MUST
 abort the protocol if either is incorrect, with an "Authentication
 Failure" code.

5.5. MSK and EMSK

 Following the last message of the protocol, both sides compute and
 export the shared keys, each 64 bytes in length:

 MSK | EMSK = prf+(SharedSecret, "EAP-EKE Exported Keys" | ID_S |
 ID_P | Nonce_P | Nonce_S)

 When the RADIUS attributes specified in [RFC2548] are used to
 transport keying material, then the first 32 bytes of the MSK
 correspond to MS-MPPE-RECV-KEY and the second 32 bytes to MS-MPPE-
 SEND-KEY. In this case, only 64 bytes of keying material (the MSK)
 are used.

 At this point, both protocol participants MUST discard all
 intermediate cryptographic values, including x_p, x_s, y_p, y_s, Ke,
 Ki, Ka, and SharedSecret. Similarly, both parties MUST immediately
 discard these values whenever the protocol terminates with a failure
 code or as a result of timeout.

6. Cryptographic Details

6.1. Generating Keying Material

 Keying material is derived as the output of the negotiated pseudo-
 random function (prf) algorithm. Since the amount of keying material
 needed may be greater than the size of the output of the prf
 algorithm, we will use the prf iteratively. We denote by "prf+" the
 function that outputs a pseudo-random stream based on the inputs to a
 prf as follows (where "|" indicates concatenation):

 prf+ (K, S) = T1 | T2 | T3 | T4 | ...

 where:

 T1 = prf(K, S | 0x01)

 T2 = prf(K, T1 | S | 0x02)

 T3 = prf(K, T2 | S | 0x03)

 T4 = prf(K, T3 | S | 0x04)

Sheffer, et al. Informational [Page 19]

RFC 6124 The EAP-EKE Method February 2011

 continuing as needed to compute all required keys. The keys are
 taken from the output string without regard to boundaries (e.g., if
 the required keys are a 256-bit Advanced Encryption Standard (AES)
 key and a 160-bit HMAC key, and the prf function generates 160 bits,
 the AES key will come from T1 and the beginning of T2, while the HMAC
 key will come from the rest of T2 and the beginning of T3).

 The constant concatenated to the end of each string feeding the prf
 is a single octet. In this document, prf+ is not defined beyond 255
 times the size of the prf output.

6.2. Diffie-Hellman Groups

 Many of the commonly used Diffie-Hellman groups are inappropriate for
 use in EKE. Most of these groups use a generator that is not a
 primitive element of the group. As a result, an attacker running a
 dictionary attack would be able to learn at least 1 bit of
 information for each decrypted password guess.

 Any MODP Diffie-Hellman group defined for use in this protocol MUST
 have the following properties to ensure that it does not leak a
 usable amount of information about the password:

 1. The generator is a primitive element of the group.

 2. The most significant 64 bits of the prime number are 1.

 3. The group’s order p is a "safe prime", i.e., (p-1)/2 is also
 prime.

 The last requirement is related to the strength of the Diffie-Hellman
 algorithm, rather than the password encryption. It also makes it
 easy to verify that the generator is primitive.

 Suitable groups are defined in Section 7.1.

6.3. Mandatory Algorithms

 To facilitate interoperability, the following algorithms are
 mandatory to implement:

 o ENCR_AES128_CBC (encryption algorithm)

 o PRF_HMAC_SHA1 (pseudo-random function)

 o MAC_HMAC_SHA1 (keyed message digest)

 o DHGROUP_EKE_14 (DH-group)

Sheffer, et al. Informational [Page 20]

RFC 6124 The EAP-EKE Method February 2011

7. IANA Considerations

 IANA has allocated the EAP method type 53 from the range 1-191, for
 "EAP-EKE Version 1".

 Per this document, IANA created the registries described in the
 following sub-sections. Values (other than private-use ones) can be
 added to these registries per Specification Required [RFC5226], with
 two exceptions: the Exchange and Failure Code registries can only be
 extended per RFC Required [RFC5226].

7.1. Diffie-Hellman Group Registry

 This section defines an IANA registry for Diffie-Hellman groups.

 This table defines the initial contents of this registry. The Value
 column is used when negotiating the group. Additional groups may be
 defined through IANA allocation. Any future specification that
 defines a non-MODP group MUST specify its use within EAP-EKE and MUST
 demonstrate the group’s security in this context.

 +-----------------+---------+---------------------------------------+
 | Name | Value | Description |
 +-----------------+---------+---------------------------------------+
Reserved	0	
DHGROUP_EKE_2	1	The prime number of the 1024-bit
		Group 2 [RFC5996], with the generator
		5 (decimal)
DHGROUP_EKE_5	2	The prime number of the 1536-bit
		Group 5 [RFC3526], g=31
DHGROUP_EKE_14	3	The prime number of the 2048-bit
		Group 14 [RFC3526], g=11
DHGROUP_EKE_15	4	The prime number of the 3072-bit
		Group 15 [RFC3526], g=5
DHGROUP_EKE_16	5	The prime number of the 4096-bit
		Group 16 [RFC3526], g=5
Available for	6-127	
allocation via		
IANA		
Reserved for	128-255	
Private Use		
 +-----------------+---------+---------------------------------------+

Sheffer, et al. Informational [Page 21]

RFC 6124 The EAP-EKE Method February 2011

7.2. Encryption Algorithm Registry

 This section defines an IANA registry for encryption algorithms:

 +-----------------+---------+-----------------------------------+
 | Name | Value | Definition |
 +-----------------+---------+-----------------------------------+
 | Reserved | 0 | |
 | ENCR_AES128_CBC | 1 | AES with a 128-bit key, CBC mode |
 | | 2-127 | Available for allocation via IANA |
 | | 128-255 | Reserved for Private Use |
 +-----------------+---------+-----------------------------------+

7.3. Pseudo-Random Function Registry

 This section defines an IANA registry for pseudo-random function
 algorithms:

 +-------------------+---------+-------------------------------------+
 | Name | Value | Definition |
 +-------------------+---------+-------------------------------------+
Reserved	0	
PRF_HMAC_SHA1	1	HMAC SHA-1, as defined in [RFC2104]
PRF_HMAC_SHA2_256	2	HMAC SHA-2-256 [SHA]
	3-127	Available for allocation via IANA
	128-255	Reserved for Private Use
 +-------------------+---------+-------------------------------------+

 A pseudo-random function takes two parameters K and S (the key and
 input string respectively), and, to be usable in this protocol, must
 be defined for all lengths of K between 0 and 65,535 bits
 (inclusive).

 Any future pseudo-random function MUST be based on the HMAC
 construct, since the security of HKDF is only known for such
 functions.

Sheffer, et al. Informational [Page 22]

RFC 6124 The EAP-EKE Method February 2011

7.4. Keyed Message Digest (MAC) Registry

 This section defines an IANA registry for keyed message digest
 algorithms:

 +-------------------+---------+--------------+----------------------+
 | Name | Value | Key Length | Definition |
 | | | (Octets) | |
 +-------------------+---------+--------------+----------------------+
Reserved	0		
MAC_HMAC_SHA1	1	20	HMAC SHA-1, as
			defined in [RFC2104]
MAC_HMAC_SHA2_256	2	32	HMAC SHA-2-256
Reserved	3-127		Available for
			allocation via IANA
Reserved	128-255		Reserved for Private
			Use
 +-------------------+---------+--------------+----------------------+

7.5. Identity Type Registry

 This section defines an IANA registry for identity types:

 +-----------+---------+---+
 | Name | Value | Definition |
 +-----------+---------+---+
Reserved	0	
ID_OPAQUE	1	An opaque octet string
ID_NAI	2	A Network Access Identifier, as defined in
		[RFC4282]
ID_IPv4	3	An IPv4 address, in binary format
ID_IPv6	4	An IPv6 address, in binary format
ID_FQDN	5	A fully qualified domain name, see note
		below
ID_DN	6	An LDAP Distinguished Name formatted as a
		string, as defined in [RFC4514]
	7-127	Available for allocation via IANA
	128-255	Reserved for Private Use
 +-----------+---------+---+

 An example of an ID_FQDN is "example.com". The string MUST NOT
 contain any terminators (e.g., NULL, CR, etc.). All characters in
 the ID_FQDN are ASCII; for an internationalized domain name, the
 syntax is as defined in [RFC5891], for example
 "xn--tmonesimerkki-bfbb.example.net".

Sheffer, et al. Informational [Page 23]

RFC 6124 The EAP-EKE Method February 2011

7.6. EAP-EKE Channel Binding Type Registry

 This section defines an IANA registry for the Channel Binding Type
 registry, a 16-bit long code. The value 0x0000 has been defined as
 Reserved. All other values up to and including 0xfeff are available
 for allocation via IANA. The remaining values up to and including
 0xffff are available for Private Use.

7.7. Exchange Registry

 This section defines an IANA registry for the EAP-EKE Exchange
 registry, an 8-bit long code. Initial values are defined in
 Section 4.1. All values up to and including 0x7f are available for
 allocation via IANA. The remaining values up to and including 0xff
 are available for private use.

7.8. Failure-Code Registry

 This section defines an IANA registry for the Failure-Code registry,
 a 32-bit long code. Initial values are defined in Section 4.2.4.
 All values up to and including 0xfeffffff are available for
 allocation via IANA. The remaining values up to and including
 0xffffffff are available for private use.

8. Security Considerations

 Any protocol that claims to solve the problem of password-
 authenticated key exchange must be resistant to active, passive, and
 dictionary attack and have the quality of forward secrecy. These
 characteristics are discussed further in the following paragraphs.

 Resistance to Passive Attack: A passive attacker is one that merely
 relays messages back and forth between the peer and server,
 faithfully, and without modification. The contents of the
 messages are available for inspection, but that is all. To
 achieve resistance to passive attack, such an attacker must not be
 able to obtain any information about the password or anything
 about the resulting shared secret from watching repeated runs of
 the protocol. Even if a passive attacker is able to learn the
 password, she will not be able to determine any information about
 the resulting secret shared by the peer and server.

 Resistance to Active Attack: An active attacker is able to modify,
 add, delete, and replay messages sent between protocol
 participants. For this protocol to be resistant to active attack,
 the attacker must not be able to obtain any information about the
 password or the shared secret by using any of its capabilities.
 In addition, the attacker must not be able to fool a protocol

Sheffer, et al. Informational [Page 24]

RFC 6124 The EAP-EKE Method February 2011

 participant into thinking that the protocol completed
 successfully. It is always possible for an active attacker to
 deny delivery of a message critical in completing the exchange.
 This is no different than dropping all messages and is not an
 attack against the protocol.

 Resistance to Dictionary Attack: For this protocol to be resistant
 to dictionary attack, any advantage an adversary can gain must be
 directly related to the number of interactions she makes with an
 honest protocol participant and not through computation. The
 adversary will not be able to obtain any information about the
 password except whether a single guess from a single protocol run
 is correct or incorrect.

 Forward Secrecy: Compromise of the password must not provide any
 information about the secrets generated by earlier runs of the
 protocol.

 [RFC3748] requires that documents describing new EAP methods clearly
 articulate the security properties of the method. In addition, for
 use with wireless LANs, [RFC4017] mandates and recommends several of
 these. The claims are:

 1. Mechanism: password.

 2. Claims:

 * Mutual authentication: the peer and server both authenticate
 each other by proving possession of a shared password. This
 is REQUIRED by [RFC4017].

 * Forward secrecy: compromise of the password does not reveal
 the secret keys (MSK and EMSK) from earlier runs of the
 protocol.

 * Replay protection: an attacker is unable to replay messages
 from a previous exchange either to learn the password or a key
 derived by the exchange. Similarly, the attacker is unable to
 induce either the peer or server to believe the exchange has
 successfully completed when it hasn’t.

 * Key derivation: a shared secret is derived by performing a
 group operation in a finite cyclic group (e.g.,
 exponentiation) using secret data contributed by both the peer
 and server. An MSK and EMSK are derived from that shared
 secret. This is REQUIRED by [RFC4017].

Sheffer, et al. Informational [Page 25]

RFC 6124 The EAP-EKE Method February 2011

 * Dictionary attack resistance: an attacker can only make one
 password guess per active attack, and the protocol is designed
 so that the attacker does not gain any confirmation of her
 guess by observing the decrypted y_s or y_p value (see below).
 The advantage she can gain is through interaction not through
 computation. This is REQUIRED by [RFC4017].

 * Session independence: this protocol is resistant to active and
 passive attacks and does not enable compromise of subsequent
 or prior MSKs or EMSKs from either passive or active attacks.

 * Denial-of-service resistance: it is possible for an attacker
 to cause a server to allocate state and consume CPU. Such an
 attack is gated, though, by the requirement that the attacker
 first obtain connectivity through a lower-layer protocol
 (e.g., 802.11 authentication followed by 802.11 association,
 or 802.3 "link-up") and respond to two EAP messages: the
 EAP-ID/Request and the EAP-EKE-ID/Request.

 * Man-in-the-Middle Attack resistance: this exchange is
 resistant to active attack, which is a requirement for
 launching a man-in-the-middle attack. This is REQUIRED by
 [RFC4017].

 * Shared state equivalence: upon completion of EAP-EKE, the peer
 and server both agree on the MSK and EMSK values. The peer
 has authenticated the server based on the Server_ID and the
 server has authenticated the peer based on the Peer_ID. This
 is due to the fact that Peer_ID, Server_ID, and the generated
 shared secret are all combined to make the authentication
 element that must be shared between the peer and server for
 the exchange to complete. This is REQUIRED by [RFC4017].

 * Fragmentation: this protocol does not define a technique for
 fragmentation and reassembly.

 * Resistance to "Denning-Sacco" attack: learning keys
 distributed from an earlier run of the protocol, such as the
 MSK or EMSK, will not help an adversary learn the password.

 3. Key strength: the strength of the resulting key depends on the
 finite cyclic group chosen. Sufficient key strength is REQUIRED
 by [RFC4017]. Clearly, "sufficient" strength varies over time,
 depending on computation power assumed to be available to
 potential attackers.

Sheffer, et al. Informational [Page 26]

RFC 6124 The EAP-EKE Method February 2011

 4. Key hierarchy: MSKs and EMSKs are derived from the secret values
 generated during the protocol run, using a negotiated pseudo-
 random function.

 5. Vulnerabilities (note that none of these are REQUIRED by
 [RFC4017]):

 * Protected ciphersuite negotiation: the ciphersuite proposal
 made by the server is not protected from tampering by an
 active attacker. However, if a proposal was modified by an
 active attacker, it would result in a failure to confirm the
 message sent by the other party, since the proposal is bound
 by each side into its Confirm message, and the protocol would
 fail as a result. Note that this assumes that none of the
 proposed ciphersuites enables an attacker to perform real-time
 cryptanalysis.

 * Confidentiality: none of the messages sent in this protocol
 are encrypted, though many of the protocol fields are.

 * Integrity protection: protocol messages are not directly
 integrity protected; however, the ID and Commit exchanges are
 integrity protected through the Auth payloads exchanged in the
 Confirm exchange.

 * Channel binding: this protocol enables the exchange of
 integrity-protected channel information that can be compared
 with values communicated via out-of-band mechanisms.

 * Fast reconnect: this protocol does not provide a fast
 reconnect capability.

 * Cryptographic binding: this protocol is not a tunneled EAP
 method and therefore has no cryptographic information to bind.

 * Identity protection: the EAP-EKE-ID exchange is not protected.
 An attacker will see the server’s identity in the EAP-EKE-ID/
 Request and see the peer’s identity in EAP-EKE-ID/Response.
 See also Section 8.4.

8.1. Cryptographic Analysis

 When analyzing the Commit exchange, it should be noted that the base
 security assumptions are different from "normal" cryptology.
 Normally, we assume that the key has strong security properties, and
 that the data may have few or none. Here, we assume that the key has
 weak security properties (the attacker may have a list of possible
 keys), and hence we need to ensure that the data has strong

Sheffer, et al. Informational [Page 27]

RFC 6124 The EAP-EKE Method February 2011

 properties (indistinguishable from random). This difference may mean
 that conventional wisdom in cryptology might not apply in this case.
 This also imposes severe constraints on the protocol, e.g., the
 mandatory use of random padding and the need to define specific
 finite groups.

8.2. Diffie-Hellman Group Considerations

 It is fundamental to the dictionary attack resistance that the
 Diffie-Hellman public values y_s and y_p are indistinguishable from a
 random string. If this condition is not met, then a passive attacker
 can do trial-decryption of the encrypted DHComponent_P or
 DHComponent_S values based on a password guess, and if they decrypt
 to a value that is not a valid public value, they know that the
 password guess was incorrect.

 For MODP groups, Section 6.2 gives conditions on the group to make
 sure that this criterion is met. For other groups (for example,
 Elliptic Curve groups), some other means of ensuring this must be
 employed. The standard way of expressing Elliptic Curve public
 values does not meet this criterion, as a valid Elliptic Curve X
 coordinate can be distinguished from a random string with probability
 of approximately 0.5.

 A future document might introduce a group representation, and/or a
 slight modification of the password encryption scheme, so that
 Elliptic Curve groups can be accommodated. [BR02] presents several
 alternative solutions for this problem.

8.3. Resistance to Active Attacks

 An attacker, impersonating either the peer or the server, can always
 try to enumerate all possible passwords, for example by using a
 dictionary. To counter this likely attack vector, both peer and
 server MUST implement rate-limiting mechanisms. We note that locking
 out the other party after a small number of tries would create a
 trivial denial-of-service opportunity.

8.4. Identity Protection, Anonymity, and Pseudonymity

 By default, the EAP-EKE-ID exchange is unprotected, and an
 eavesdropper can observe both parties’ identities. A future
 extension of this protocol may support anonymity, e.g., by allowing
 the server to send a temporary identity to the peer at the end of the
 exchange, so that the peer can use that identity in subsequent
 exchanges.

Sheffer, et al. Informational [Page 28]

RFC 6124 The EAP-EKE Method February 2011

 EAP-EKE differs in this respect from tunneled methods, which
 typically provide unconditional identity protection to the peer by
 encrypting the identity exchange, but reveal information in the
 server certificate. It is possible to use EAP-EKE as the inner
 method in a tunneled EAP method in order to achieve this level of
 identity protection.

8.5. Password Processing and Long-Term Storage

 This document recommends that a password-equivalent (a hash of the
 password) be stored instead of the cleartext password. While this
 solution provides a measure of security, there are also tradeoffs
 related to algorithm agility:

 o Each stored password must identify the hash function that was used
 to compute the stored value.

 o Complex deployments and migration scenarios might necessitate
 multiple stored passwords, one per each algorithm.

 o Changing the algorithm can require, in some cases, that the users
 manually change their passwords.

 The reader is referred to Section 10 of [RFC3629] for security
 considerations related to the parsing and processing of UTF-8
 strings.

9. Acknowledgements

 Much of this document was unashamedly picked from [RFC5931] and
 [EAP-SRP], and we would like to acknowledge the authors of these
 documents: Dan Harkins, Glen Zorn, James Carlson, Bernard Aboba, and
 Henry Haverinen. We would like to thank David Jacobson, Steve
 Bellovin, Russ Housley, Brian Weis, Dan Harkins, and Alexey Melnikov
 for their useful comments. Lidar Herooty and Idan Ofrat implemented
 this protocol and helped us improve it by asking the right questions,
 and we would like to thank them both.

10. References

10.1. Normative References

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:
 Keyed-Hashing for Message Authentication",
 RFC 2104, February 1997.

Sheffer, et al. Informational [Page 29]

RFC 6124 The EAP-EKE Method February 2011

 [RFC2119] Bradner, S., "Key words for use in RFCs to
 Indicate Requirement Levels", BCP 14, RFC 2119,
 March 1997.

 [RFC2548] Zorn, G., "Microsoft Vendor-specific RADIUS
 Attributes", RFC 2548, March 1999.

 [RFC3454] Hoffman, P. and M. Blanchet, "Preparation of
 Internationalized Strings ("stringprep")",
 RFC 3454, December 2002.

 [RFC3526] Kivinen, T. and M. Kojo, "More Modular
 Exponential (MODP) Diffie-Hellman groups for
 Internet Key Exchange (IKE)", RFC 3526, May 2003.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of
 ISO 10646", STD 63, RFC 3629, November 2003.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson,
 J., and H. Levkowetz, "Extensible Authentication
 Protocol (EAP)", RFC 3748, June 2004.

 [RFC4013] Zeilenga, K., "SASLprep: Stringprep Profile for
 User Names and Passwords", RFC 4013,
 February 2005.

 [RFC4282] Aboba, B., Beadles, M., Arkko, J., and P. Eronen,
 "The Network Access Identifier", RFC 4282,
 December 2005.

 [RFC4514] Zeilenga, K., "Lightweight Directory Access
 Protocol (LDAP): String Representation of
 Distinguished Names", RFC 4514, June 2006.

 [RFC5891] Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891,
 August 2010.

 [RFC5996] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
 "Internet Key Exchange Protocol Version 2
 (IKEv2)", RFC 5996, September 2010.

 [SHA] National Institute of Standards and Technology,
 U.S. Department of Commerce, "Secure Hash
 Standard", NIST FIPS 180-3, October 2008.

Sheffer, et al. Informational [Page 30]

RFC 6124 The EAP-EKE Method February 2011

10.2. Informative References

 [BM92] Bellovin, S. and M. Merritt, "Encrypted Key
 Exchange: Password-Based Protocols Secure Against
 Dictionary Attacks", Proc. IEEE Symp. on Research
 in Security and Privacy , May 1992.

 [BM93] Bellovin, S. and M. Merritt, "Augmented Encrypted
 Key Exchange: A Password-Based Protocol Secure
 against Dictionary Attacks and Password File
 Compromise", Proc. 1st ACM Conference on Computer
 and Communication Security , 1993.

 [BMP00] Boyko, V., MacKenzie, P., and S. Patel, "Provably
 Secure Password Authenticated Key Exchange Using
 Diffie-Hellman", Advances in Cryptology,
 EUROCRYPT 2000 , 2000.

 [BR02] Black, J. and P. Rogaway, "Ciphers with Arbitrary
 Finite Domains", Proc. of the RSA Cryptographer’s
 Track (RSA CT ’02), LNCS 2271 , 2002.

 [EAP-SRP] Carlson, J., Aboba, B., and H. Haverinen, "EAP
 SRP-SHA1 Authentication Protocol", Work
 in Progress, July 2001.

 [JAB96] Jablon, D., "Strong Password-Only Authenticated
 Key Exchange", ACM Computer Communications
 Review Volume 1, Issue 5, October 1996.

 [LUC97] Lucks, S., "Open Key Exchange: How to Defeat
 Dictionary Attacks Without Encrypting Public
 Keys", Proc. of the Security Protocols
 Workshop LNCS 1361, 1997.

 [NIST.800-90.2007] National Institute of Standards and Technology,
 "Recommendation for Random Number Generation
 Using Deterministic Random Bit Generators
 (Revised)", NIST SP 800-90, March 2007.

 [PA97] Patel, S., "Number Theoretic Attacks On Secure
 Password Schemes", Proceedings of the 1997 IEEE
 Symposium on Security and Privacy , 1997.

 [RFC4017] Stanley, D., Walker, J., and B. Aboba,
 "Extensible Authentication Protocol (EAP) Method
 Requirements for Wireless LANs", RFC 4017,
 March 2005.

Sheffer, et al. Informational [Page 31]

RFC 6124 The EAP-EKE Method February 2011

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106,
 RFC 4086, June 2005.

 [RFC5209] Sangster, P., Khosravi, H., Mani, M., Narayan,
 K., and J. Tardo, "Network Endpoint Assessment
 (NEA): Overview and Requirements", RFC 5209,
 June 2008.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for
 Writing an IANA Considerations Section in RFCs",
 BCP 26, RFC 5226, May 2008.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-
 and-Expand Key Derivation Function (HKDF)",
 RFC 5869, May 2010.

 [RFC5931] Harkins, D. and G. Zorn, "Extensible
 Authentication Protocol (EAP) Authentication
 Using Only a Password", RFC 5931, August 2010.

Sheffer, et al. Informational [Page 32]

RFC 6124 The EAP-EKE Method February 2011

Authors’ Addresses

 Yaron Sheffer
 Independent

 EMail: yaronf.ietf@gmail.com

 Glen Zorn
 Network Zen
 227/358 Thanon Sanphawut
 Bang Na, Bangkok 10260
 Thailand

 Phone: +66 (0) 87-040-4617
 EMail: gwz@net-zen.net

 Hannes Tschofenig
 Nokia Siemens Networks
 Linnoitustie 6
 Espoo 02600
 Finland

 Phone: +358 (50) 4871445
 EMail: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

 Scott Fluhrer
 Cisco Systems.
 1414 Massachusetts Ave.
 Boxborough, MA 01719
 USA

 EMail: sfluhrer@cisco.com

Sheffer, et al. Informational [Page 33]

