public class VertexRDDImpl<VD> extends VertexRDD<VD>
| Modifier and Type | Method and Description |
|---|---|
static RDD<T> |
$plus$plus(RDD<T> other) |
static <U> U |
aggregate(U zeroValue,
scala.Function2<U,T,U> seqOp,
scala.Function2<U,U,U> combOp,
scala.reflect.ClassTag<U> evidence$29) |
<VD2> VertexRDD<VD2> |
aggregateUsingIndex(RDD<scala.Tuple2<Object,VD2>> messages,
scala.Function2<VD2,VD2,VD2> reduceFunc,
scala.reflect.ClassTag<VD2> evidence$12)
Aggregates vertices in
messages that have the same ids using reduceFunc, returning a
VertexRDD co-indexed with this. |
VertexRDDImpl<VD> |
cache()
Persists the vertex partitions at `targetStorageLevel`, which defaults to MEMORY_ONLY.
|
static <U> RDD<scala.Tuple2<T,U>> |
cartesian(RDD<U> other,
scala.reflect.ClassTag<U> evidence$5) |
void |
checkpoint() |
static RDD<T> |
coalesce(int numPartitions,
boolean shuffle,
scala.Option<PartitionCoalescer> partitionCoalescer,
scala.math.Ordering<T> ord) |
static boolean |
coalesce$default$2() |
static scala.Option<PartitionCoalescer> |
coalesce$default$3() |
static scala.math.Ordering<T> |
coalesce$default$4(int numPartitions,
boolean shuffle,
scala.Option<PartitionCoalescer> partitionCoalescer) |
static Object |
collect() |
static <U> RDD<U> |
collect(scala.PartialFunction<T,U> f,
scala.reflect.ClassTag<U> evidence$28) |
static scala.collection.Iterator<scala.Tuple2<Object,VD>> |
compute(Partition part,
TaskContext context) |
static SparkContext |
context() |
long |
count()
The number of vertices in the RDD.
|
static PartialResult<BoundedDouble> |
countApprox(long timeout,
double confidence) |
static double |
countApprox$default$2() |
static long |
countApproxDistinct(double relativeSD) |
static long |
countApproxDistinct(int p,
int sp) |
static double |
countApproxDistinct$default$1() |
static scala.collection.Map<T,Object> |
countByValue(scala.math.Ordering<T> ord) |
static scala.math.Ordering<T> |
countByValue$default$1() |
static PartialResult<scala.collection.Map<T,BoundedDouble>> |
countByValueApprox(long timeout,
double confidence,
scala.math.Ordering<T> ord) |
static double |
countByValueApprox$default$2() |
static scala.math.Ordering<T> |
countByValueApprox$default$3(long timeout,
double confidence) |
static scala.collection.Seq<Dependency<?>> |
dependencies() |
VertexRDD<VD> |
diff(RDD<scala.Tuple2<Object,VD>> other)
For each vertex present in both
this and other, diff returns only those vertices with
differing values; for values that are different, keeps the values from other. |
VertexRDD<VD> |
diff(VertexRDD<VD> other)
For each vertex present in both
this and other, diff returns only those vertices with
differing values; for values that are different, keeps the values from other. |
static RDD<T> |
distinct() |
static RDD<T> |
distinct(int numPartitions,
scala.math.Ordering<T> ord) |
static scala.math.Ordering<T> |
distinct$default$2(int numPartitions) |
static VertexRDD<VD> |
filter(scala.Function1<scala.Tuple2<Object,VD>,Object> pred) |
static T |
first() |
static <U> RDD<U> |
flatMap(scala.Function1<T,scala.collection.TraversableOnce<U>> f,
scala.reflect.ClassTag<U> evidence$4) |
static T |
fold(T zeroValue,
scala.Function2<T,T,T> op) |
static void |
foreach(scala.Function1<T,scala.runtime.BoxedUnit> f) |
static void |
foreachPartition(scala.Function1<scala.collection.Iterator<T>,scala.runtime.BoxedUnit> f) |
scala.Option<String> |
getCheckpointFile() |
static int |
getNumPartitions() |
StorageLevel |
getStorageLevel() |
static RDD<Object> |
glom() |
static <K> RDD<scala.Tuple2<K,scala.collection.Iterable<T>>> |
groupBy(scala.Function1<T,K> f,
scala.reflect.ClassTag<K> kt) |
static <K> RDD<scala.Tuple2<K,scala.collection.Iterable<T>>> |
groupBy(scala.Function1<T,K> f,
int numPartitions,
scala.reflect.ClassTag<K> kt) |
static <K> RDD<scala.Tuple2<K,scala.collection.Iterable<T>>> |
groupBy(scala.Function1<T,K> f,
Partitioner p,
scala.reflect.ClassTag<K> kt,
scala.math.Ordering<K> ord) |
static <K> scala.runtime.Null$ |
groupBy$default$4(scala.Function1<T,K> f,
Partitioner p) |
static int |
id() |
<U,VD2> VertexRDD<VD2> |
innerJoin(RDD<scala.Tuple2<Object,U>> other,
scala.Function3<Object,VD,U,VD2> f,
scala.reflect.ClassTag<U> evidence$10,
scala.reflect.ClassTag<VD2> evidence$11)
Inner joins this VertexRDD with an RDD containing vertex attribute pairs.
|
<U,VD2> VertexRDD<VD2> |
innerZipJoin(VertexRDD<U> other,
scala.Function3<Object,VD,U,VD2> f,
scala.reflect.ClassTag<U> evidence$8,
scala.reflect.ClassTag<VD2> evidence$9)
Efficiently inner joins this VertexRDD with another VertexRDD sharing the same index.
|
static RDD<T> |
intersection(RDD<T> other) |
static RDD<T> |
intersection(RDD<T> other,
int numPartitions) |
static RDD<T> |
intersection(RDD<T> other,
Partitioner partitioner,
scala.math.Ordering<T> ord) |
static scala.math.Ordering<T> |
intersection$default$3(RDD<T> other,
Partitioner partitioner) |
boolean |
isCheckpointed() |
static boolean |
isEmpty() |
static scala.collection.Iterator<T> |
iterator(Partition split,
TaskContext context) |
static <K> RDD<scala.Tuple2<K,T>> |
keyBy(scala.Function1<T,K> f) |
<VD2,VD3> VertexRDD<VD3> |
leftJoin(RDD<scala.Tuple2<Object,VD2>> other,
scala.Function3<Object,VD,scala.Option<VD2>,VD3> f,
scala.reflect.ClassTag<VD2> evidence$6,
scala.reflect.ClassTag<VD3> evidence$7)
Left joins this VertexRDD with an RDD containing vertex attribute pairs.
|
<VD2,VD3> VertexRDD<VD3> |
leftZipJoin(VertexRDD<VD2> other,
scala.Function3<Object,VD,scala.Option<VD2>,VD3> f,
scala.reflect.ClassTag<VD2> evidence$4,
scala.reflect.ClassTag<VD3> evidence$5)
Left joins this RDD with another VertexRDD with the same index.
|
static RDD<T> |
localCheckpoint() |
static <U> RDD<U> |
map(scala.Function1<T,U> f,
scala.reflect.ClassTag<U> evidence$3) |
static <U> RDD<U> |
mapPartitions(scala.Function1<scala.collection.Iterator<T>,scala.collection.Iterator<U>> f,
boolean preservesPartitioning,
scala.reflect.ClassTag<U> evidence$6) |
static <U> boolean |
mapPartitions$default$2() |
static <U> boolean |
mapPartitionsInternal$default$2() |
static <U> RDD<U> |
mapPartitionsWithIndex(scala.Function2<Object,scala.collection.Iterator<T>,scala.collection.Iterator<U>> f,
boolean preservesPartitioning,
scala.reflect.ClassTag<U> evidence$8) |
static <U> boolean |
mapPartitionsWithIndex$default$2() |
<VD2> VertexRDD<VD2> |
mapValues(scala.Function1<VD,VD2> f,
scala.reflect.ClassTag<VD2> evidence$2)
Maps each vertex attribute, preserving the index.
|
<VD2> VertexRDD<VD2> |
mapValues(scala.Function2<Object,VD,VD2> f,
scala.reflect.ClassTag<VD2> evidence$3)
Maps each vertex attribute, additionally supplying the vertex ID.
|
static T |
max(scala.math.Ordering<T> ord) |
static T |
min(scala.math.Ordering<T> ord) |
VertexRDD<VD> |
minus(RDD<scala.Tuple2<Object,VD>> other)
For each VertexId present in both
this and other, minus will act as a set difference
operation returning only those unique VertexId's present in this. |
VertexRDD<VD> |
minus(VertexRDD<VD> other)
For each VertexId present in both
this and other, minus will act as a set difference
operation returning only those unique VertexId's present in this. |
static void |
name_$eq(String x$1) |
static String |
name() |
scala.Option<Partitioner> |
partitioner() |
static Partition[] |
partitions() |
RDD<org.apache.spark.graphx.impl.ShippableVertexPartition<VD>> |
partitionsRDD() |
VertexRDDImpl<VD> |
persist(StorageLevel newLevel)
Persists the vertex partitions at the specified storage level, ignoring any existing target
storage level.
|
static RDD<String> |
pipe(scala.collection.Seq<String> command,
scala.collection.Map<String,String> env,
scala.Function1<scala.Function1<String,scala.runtime.BoxedUnit>,scala.runtime.BoxedUnit> printPipeContext,
scala.Function2<T,scala.Function1<String,scala.runtime.BoxedUnit>,scala.runtime.BoxedUnit> printRDDElement,
boolean separateWorkingDir,
int bufferSize,
String encoding) |
static RDD<String> |
pipe(String command) |
static RDD<String> |
pipe(String command,
scala.collection.Map<String,String> env) |
static scala.collection.Map<String,String> |
pipe$default$2() |
static scala.Function1<scala.Function1<String,scala.runtime.BoxedUnit>,scala.runtime.BoxedUnit> |
pipe$default$3() |
static scala.Function2<T,scala.Function1<String,scala.runtime.BoxedUnit>,scala.runtime.BoxedUnit> |
pipe$default$4() |
static boolean |
pipe$default$5() |
static int |
pipe$default$6() |
static String |
pipe$default$7() |
static scala.collection.Seq<String> |
preferredLocations(Partition split) |
static RDD<T>[] |
randomSplit(double[] weights,
long seed) |
static long |
randomSplit$default$2() |
static T |
reduce(scala.Function2<T,T,T> f) |
VertexRDD<VD> |
reindex()
Construct a new VertexRDD that is indexed by only the visible vertices.
|
static RDD<T> |
repartition(int numPartitions,
scala.math.Ordering<T> ord) |
static scala.math.Ordering<T> |
repartition$default$2(int numPartitions) |
VertexRDD<VD> |
reverseRoutingTables()
Returns a new
VertexRDD reflecting a reversal of all edge directions in the corresponding
EdgeRDD. |
static RDD<T> |
sample(boolean withReplacement,
double fraction,
long seed) |
static long |
sample$default$3() |
static void |
saveAsObjectFile(String path) |
static void |
saveAsTextFile(String path) |
static void |
saveAsTextFile(String path,
Class<? extends org.apache.hadoop.io.compress.CompressionCodec> codec) |
VertexRDDImpl<VD> |
setName(String _name) |
static <K> RDD<T> |
sortBy(scala.Function1<T,K> f,
boolean ascending,
int numPartitions,
scala.math.Ordering<K> ord,
scala.reflect.ClassTag<K> ctag) |
static <K> boolean |
sortBy$default$2() |
static <K> int |
sortBy$default$3() |
static SparkContext |
sparkContext() |
static RDD<T> |
subtract(RDD<T> other) |
static RDD<T> |
subtract(RDD<T> other,
int numPartitions) |
static RDD<T> |
subtract(RDD<T> other,
Partitioner p,
scala.math.Ordering<T> ord) |
static scala.math.Ordering<T> |
subtract$default$3(RDD<T> other,
Partitioner p) |
static Object |
take(int num) |
static Object |
takeOrdered(int num,
scala.math.Ordering<T> ord) |
static Object |
takeSample(boolean withReplacement,
int num,
long seed) |
static long |
takeSample$default$3() |
StorageLevel |
targetStorageLevel() |
static String |
toDebugString() |
static JavaRDD<T> |
toJavaRDD() |
static scala.collection.Iterator<T> |
toLocalIterator() |
static Object |
top(int num,
scala.math.Ordering<T> ord) |
static String |
toString() |
static <U> U |
treeAggregate(U zeroValue,
scala.Function2<U,T,U> seqOp,
scala.Function2<U,U,U> combOp,
int depth,
scala.reflect.ClassTag<U> evidence$30) |
static <U> int |
treeAggregate$default$4(U zeroValue) |
static T |
treeReduce(scala.Function2<T,T,T> f,
int depth) |
static int |
treeReduce$default$2() |
static RDD<T> |
union(RDD<T> other) |
VertexRDDImpl<VD> |
unpersist(boolean blocking) |
static boolean |
unpersist$default$1() |
VertexRDD<VD> |
withEdges(EdgeRDD<?> edges)
Prepares this VertexRDD for efficient joins with the given EdgeRDD.
|
static <U> RDD<scala.Tuple2<T,U>> |
zip(RDD<U> other,
scala.reflect.ClassTag<U> evidence$9) |
static <B,V> RDD<V> |
zipPartitions(RDD<B> rdd2,
boolean preservesPartitioning,
scala.Function2<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<V>> f,
scala.reflect.ClassTag<B> evidence$10,
scala.reflect.ClassTag<V> evidence$11) |
static <B,V> RDD<V> |
zipPartitions(RDD<B> rdd2,
scala.Function2<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<V>> f,
scala.reflect.ClassTag<B> evidence$12,
scala.reflect.ClassTag<V> evidence$13) |
static <B,C,V> RDD<V> |
zipPartitions(RDD<B> rdd2,
RDD<C> rdd3,
boolean preservesPartitioning,
scala.Function3<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<C>,scala.collection.Iterator<V>> f,
scala.reflect.ClassTag<B> evidence$14,
scala.reflect.ClassTag<C> evidence$15,
scala.reflect.ClassTag<V> evidence$16) |
static <B,C,V> RDD<V> |
zipPartitions(RDD<B> rdd2,
RDD<C> rdd3,
scala.Function3<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<C>,scala.collection.Iterator<V>> f,
scala.reflect.ClassTag<B> evidence$17,
scala.reflect.ClassTag<C> evidence$18,
scala.reflect.ClassTag<V> evidence$19) |
static <B,C,D,V> RDD<V> |
zipPartitions(RDD<B> rdd2,
RDD<C> rdd3,
RDD<D> rdd4,
boolean preservesPartitioning,
scala.Function4<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<C>,scala.collection.Iterator<D>,scala.collection.Iterator<V>> f,
scala.reflect.ClassTag<B> evidence$20,
scala.reflect.ClassTag<C> evidence$21,
scala.reflect.ClassTag<D> evidence$22,
scala.reflect.ClassTag<V> evidence$23) |
static <B,C,D,V> RDD<V> |
zipPartitions(RDD<B> rdd2,
RDD<C> rdd3,
RDD<D> rdd4,
scala.Function4<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<C>,scala.collection.Iterator<D>,scala.collection.Iterator<V>> f,
scala.reflect.ClassTag<B> evidence$24,
scala.reflect.ClassTag<C> evidence$25,
scala.reflect.ClassTag<D> evidence$26,
scala.reflect.ClassTag<V> evidence$27) |
static RDD<scala.Tuple2<T,Object>> |
zipWithIndex() |
static RDD<scala.Tuple2<T,Object>> |
zipWithUniqueId() |
apply, apply, apply, compute, filter, fromEdges, persistaggregate, cartesian, coalesce, collect, collect, context, countApprox, countApproxDistinct, countApproxDistinct, countByValue, countByValueApprox, dependencies, distinct, distinct, doubleRDDToDoubleRDDFunctions, first, flatMap, fold, foreach, foreachPartition, getNumPartitions, glom, groupBy, groupBy, groupBy, id, intersection, intersection, intersection, isEmpty, iterator, keyBy, localCheckpoint, map, mapPartitions, mapPartitionsWithIndex, max, min, name, numericRDDToDoubleRDDFunctions, partitions, persist, pipe, pipe, pipe, preferredLocations, randomSplit, rddToAsyncRDDActions, rddToOrderedRDDFunctions, rddToPairRDDFunctions, rddToSequenceFileRDDFunctions, reduce, repartition, sample, saveAsObjectFile, saveAsTextFile, saveAsTextFile, sortBy, sparkContext, subtract, subtract, subtract, take, takeOrdered, takeSample, toDebugString, toJavaRDD, toLocalIterator, top, toString, treeAggregate, treeReduce, union, zip, zipPartitions, zipPartitions, zipPartitions, zipPartitions, zipPartitions, zipPartitions, zipWithIndex, zipWithUniqueIdpublic static SparkContext sparkContext()
public static int id()
public static String name()
public static void name_$eq(String x$1)
public static final scala.collection.Seq<Dependency<?>> dependencies()
public static final Partition[] partitions()
public static final int getNumPartitions()
public static final scala.collection.Seq<String> preferredLocations(Partition split)
public static final scala.collection.Iterator<T> iterator(Partition split, TaskContext context)
public static <U> RDD<U> map(scala.Function1<T,U> f, scala.reflect.ClassTag<U> evidence$3)
public static <U> RDD<U> flatMap(scala.Function1<T,scala.collection.TraversableOnce<U>> f, scala.reflect.ClassTag<U> evidence$4)
public static RDD<T> distinct(int numPartitions, scala.math.Ordering<T> ord)
public static RDD<T> distinct()
public static RDD<T> repartition(int numPartitions, scala.math.Ordering<T> ord)
public static RDD<T> coalesce(int numPartitions, boolean shuffle, scala.Option<PartitionCoalescer> partitionCoalescer, scala.math.Ordering<T> ord)
public static RDD<T> sample(boolean withReplacement, double fraction, long seed)
public static RDD<T>[] randomSplit(double[] weights, long seed)
public static Object takeSample(boolean withReplacement,
int num,
long seed)
public static <K> RDD<T> sortBy(scala.Function1<T,K> f, boolean ascending, int numPartitions, scala.math.Ordering<K> ord, scala.reflect.ClassTag<K> ctag)
public static RDD<T> intersection(RDD<T> other, Partitioner partitioner, scala.math.Ordering<T> ord)
public static RDD<Object> glom()
public static <U> RDD<scala.Tuple2<T,U>> cartesian(RDD<U> other, scala.reflect.ClassTag<U> evidence$5)
public static <K> RDD<scala.Tuple2<K,scala.collection.Iterable<T>>> groupBy(scala.Function1<T,K> f, scala.reflect.ClassTag<K> kt)
public static <K> RDD<scala.Tuple2<K,scala.collection.Iterable<T>>> groupBy(scala.Function1<T,K> f, int numPartitions, scala.reflect.ClassTag<K> kt)
public static <K> RDD<scala.Tuple2<K,scala.collection.Iterable<T>>> groupBy(scala.Function1<T,K> f, Partitioner p, scala.reflect.ClassTag<K> kt, scala.math.Ordering<K> ord)
public static RDD<String> pipe(String command)
public static RDD<String> pipe(String command, scala.collection.Map<String,String> env)
public static RDD<String> pipe(scala.collection.Seq<String> command, scala.collection.Map<String,String> env, scala.Function1<scala.Function1<String,scala.runtime.BoxedUnit>,scala.runtime.BoxedUnit> printPipeContext, scala.Function2<T,scala.Function1<String,scala.runtime.BoxedUnit>,scala.runtime.BoxedUnit> printRDDElement, boolean separateWorkingDir, int bufferSize, String encoding)
public static <U> RDD<U> mapPartitions(scala.Function1<scala.collection.Iterator<T>,scala.collection.Iterator<U>> f, boolean preservesPartitioning, scala.reflect.ClassTag<U> evidence$6)
public static <U> RDD<U> mapPartitionsWithIndex(scala.Function2<Object,scala.collection.Iterator<T>,scala.collection.Iterator<U>> f, boolean preservesPartitioning, scala.reflect.ClassTag<U> evidence$8)
public static <U> RDD<scala.Tuple2<T,U>> zip(RDD<U> other, scala.reflect.ClassTag<U> evidence$9)
public static <B,V> RDD<V> zipPartitions(RDD<B> rdd2, boolean preservesPartitioning, scala.Function2<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<V>> f, scala.reflect.ClassTag<B> evidence$10, scala.reflect.ClassTag<V> evidence$11)
public static <B,V> RDD<V> zipPartitions(RDD<B> rdd2, scala.Function2<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<V>> f, scala.reflect.ClassTag<B> evidence$12, scala.reflect.ClassTag<V> evidence$13)
public static <B,C,V> RDD<V> zipPartitions(RDD<B> rdd2, RDD<C> rdd3, boolean preservesPartitioning, scala.Function3<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<C>,scala.collection.Iterator<V>> f, scala.reflect.ClassTag<B> evidence$14, scala.reflect.ClassTag<C> evidence$15, scala.reflect.ClassTag<V> evidence$16)
public static <B,C,V> RDD<V> zipPartitions(RDD<B> rdd2, RDD<C> rdd3, scala.Function3<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<C>,scala.collection.Iterator<V>> f, scala.reflect.ClassTag<B> evidence$17, scala.reflect.ClassTag<C> evidence$18, scala.reflect.ClassTag<V> evidence$19)
public static <B,C,D,V> RDD<V> zipPartitions(RDD<B> rdd2, RDD<C> rdd3, RDD<D> rdd4, boolean preservesPartitioning, scala.Function4<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<C>,scala.collection.Iterator<D>,scala.collection.Iterator<V>> f, scala.reflect.ClassTag<B> evidence$20, scala.reflect.ClassTag<C> evidence$21, scala.reflect.ClassTag<D> evidence$22, scala.reflect.ClassTag<V> evidence$23)
public static <B,C,D,V> RDD<V> zipPartitions(RDD<B> rdd2, RDD<C> rdd3, RDD<D> rdd4, scala.Function4<scala.collection.Iterator<T>,scala.collection.Iterator<B>,scala.collection.Iterator<C>,scala.collection.Iterator<D>,scala.collection.Iterator<V>> f, scala.reflect.ClassTag<B> evidence$24, scala.reflect.ClassTag<C> evidence$25, scala.reflect.ClassTag<D> evidence$26, scala.reflect.ClassTag<V> evidence$27)
public static void foreach(scala.Function1<T,scala.runtime.BoxedUnit> f)
public static void foreachPartition(scala.Function1<scala.collection.Iterator<T>,scala.runtime.BoxedUnit> f)
public static Object collect()
public static scala.collection.Iterator<T> toLocalIterator()
public static <U> RDD<U> collect(scala.PartialFunction<T,U> f, scala.reflect.ClassTag<U> evidence$28)
public static RDD<T> subtract(RDD<T> other, Partitioner p, scala.math.Ordering<T> ord)
public static T reduce(scala.Function2<T,T,T> f)
public static T treeReduce(scala.Function2<T,T,T> f,
int depth)
public static T fold(T zeroValue,
scala.Function2<T,T,T> op)
public static <U> U aggregate(U zeroValue,
scala.Function2<U,T,U> seqOp,
scala.Function2<U,U,U> combOp,
scala.reflect.ClassTag<U> evidence$29)
public static <U> U treeAggregate(U zeroValue,
scala.Function2<U,T,U> seqOp,
scala.Function2<U,U,U> combOp,
int depth,
scala.reflect.ClassTag<U> evidence$30)
public static PartialResult<BoundedDouble> countApprox(long timeout, double confidence)
public static scala.collection.Map<T,Object> countByValue(scala.math.Ordering<T> ord)
public static PartialResult<scala.collection.Map<T,BoundedDouble>> countByValueApprox(long timeout, double confidence, scala.math.Ordering<T> ord)
public static long countApproxDistinct(int p,
int sp)
public static long countApproxDistinct(double relativeSD)
public static RDD<scala.Tuple2<T,Object>> zipWithIndex()
public static RDD<scala.Tuple2<T,Object>> zipWithUniqueId()
public static Object take(int num)
public static T first()
public static Object top(int num,
scala.math.Ordering<T> ord)
public static Object takeOrdered(int num,
scala.math.Ordering<T> ord)
public static T max(scala.math.Ordering<T> ord)
public static T min(scala.math.Ordering<T> ord)
public static boolean isEmpty()
public static void saveAsTextFile(String path)
public static void saveAsTextFile(String path,
Class<? extends org.apache.hadoop.io.compress.CompressionCodec> codec)
public static void saveAsObjectFile(String path)
public static <K> RDD<scala.Tuple2<K,T>> keyBy(scala.Function1<T,K> f)
public static RDD<T> localCheckpoint()
public static SparkContext context()
public static String toDebugString()
public static String toString()
public static JavaRDD<T> toJavaRDD()
public static long sample$default$3()
public static <U> boolean mapPartitionsWithIndex$default$2()
public static boolean unpersist$default$1()
public static scala.math.Ordering<T> distinct$default$2(int numPartitions)
public static boolean coalesce$default$2()
public static scala.Option<PartitionCoalescer> coalesce$default$3()
public static scala.math.Ordering<T> coalesce$default$4(int numPartitions,
boolean shuffle,
scala.Option<PartitionCoalescer> partitionCoalescer)
public static scala.math.Ordering<T> repartition$default$2(int numPartitions)
public static scala.math.Ordering<T> subtract$default$3(RDD<T> other, Partitioner p)
public static scala.math.Ordering<T> intersection$default$3(RDD<T> other, Partitioner partitioner)
public static long randomSplit$default$2()
public static <K> boolean sortBy$default$2()
public static <K> int sortBy$default$3()
public static <U> boolean mapPartitions$default$2()
public static <K> scala.runtime.Null$ groupBy$default$4(scala.Function1<T,K> f,
Partitioner p)
public static scala.collection.Map<String,String> pipe$default$2()
public static scala.Function1<scala.Function1<String,scala.runtime.BoxedUnit>,scala.runtime.BoxedUnit> pipe$default$3()
public static scala.Function2<T,scala.Function1<String,scala.runtime.BoxedUnit>,scala.runtime.BoxedUnit> pipe$default$4()
public static boolean pipe$default$5()
public static int pipe$default$6()
public static String pipe$default$7()
public static int treeReduce$default$2()
public static <U> int treeAggregate$default$4(U zeroValue)
public static double countApprox$default$2()
public static scala.math.Ordering<T> countByValue$default$1()
public static double countByValueApprox$default$2()
public static scala.math.Ordering<T> countByValueApprox$default$3(long timeout,
double confidence)
public static long takeSample$default$3()
public static double countApproxDistinct$default$1()
public static <U> boolean mapPartitionsInternal$default$2()
public static scala.collection.Iterator<scala.Tuple2<Object,VD>> compute(Partition part, TaskContext context)
public static VertexRDD<VD> filter(scala.Function1<scala.Tuple2<Object,VD>,Object> pred)
public StorageLevel targetStorageLevel()
public VertexRDD<VD> reindex()
VertexRDDpublic scala.Option<Partitioner> partitioner()
partitioner in class VertexRDD<VD>public VertexRDDImpl<VD> setName(String _name)
public VertexRDDImpl<VD> persist(StorageLevel newLevel)
public VertexRDDImpl<VD> unpersist(boolean blocking)
public VertexRDDImpl<VD> cache()
public StorageLevel getStorageLevel()
getStorageLevel in class VertexRDD<VD>public void checkpoint()
checkpoint in class VertexRDD<VD>public boolean isCheckpointed()
isCheckpointed in class VertexRDD<VD>public scala.Option<String> getCheckpointFile()
getCheckpointFile in class VertexRDD<VD>public long count()
public <VD2> VertexRDD<VD2> mapValues(scala.Function1<VD,VD2> f, scala.reflect.ClassTag<VD2> evidence$2)
VertexRDDpublic <VD2> VertexRDD<VD2> mapValues(scala.Function2<Object,VD,VD2> f, scala.reflect.ClassTag<VD2> evidence$3)
VertexRDDpublic VertexRDD<VD> minus(RDD<scala.Tuple2<Object,VD>> other)
VertexRDDthis and other, minus will act as a set difference
operation returning only those unique VertexId's present in this.
public VertexRDD<VD> minus(VertexRDD<VD> other)
VertexRDDthis and other, minus will act as a set difference
operation returning only those unique VertexId's present in this.
public VertexRDD<VD> diff(RDD<scala.Tuple2<Object,VD>> other)
VertexRDDthis and other, diff returns only those vertices with
differing values; for values that are different, keeps the values from other. This is
only guaranteed to work if the VertexRDDs share a common ancestor.
public VertexRDD<VD> diff(VertexRDD<VD> other)
VertexRDDthis and other, diff returns only those vertices with
differing values; for values that are different, keeps the values from other. This is
only guaranteed to work if the VertexRDDs share a common ancestor.
public <VD2,VD3> VertexRDD<VD3> leftZipJoin(VertexRDD<VD2> other, scala.Function3<Object,VD,scala.Option<VD2>,VD3> f, scala.reflect.ClassTag<VD2> evidence$4, scala.reflect.ClassTag<VD3> evidence$5)
VertexRDDthis.
If other is missing any vertex in this VertexRDD, f is passed None.
leftZipJoin in class VertexRDD<VD>other - the other VertexRDD with which to join.f - the function mapping a vertex id and its attributes in this and the other vertex set
to a new vertex attribute.evidence$4 - (undocumented)evidence$5 - (undocumented)fpublic <VD2,VD3> VertexRDD<VD3> leftJoin(RDD<scala.Tuple2<Object,VD2>> other, scala.Function3<Object,VD,scala.Option<VD2>,VD3> f, scala.reflect.ClassTag<VD2> evidence$6, scala.reflect.ClassTag<VD3> evidence$7)
VertexRDDleftZipJoin implementation is
used. The resulting VertexRDD contains an entry for each vertex in this. If other is
missing any vertex in this VertexRDD, f is passed None. If there are duplicates,
the vertex is picked arbitrarily.
leftJoin in class VertexRDD<VD>other - the other VertexRDD with which to joinf - the function mapping a vertex id and its attributes in this and the other vertex set
to a new vertex attribute.evidence$6 - (undocumented)evidence$7 - (undocumented)f.public <U,VD2> VertexRDD<VD2> innerZipJoin(VertexRDD<U> other, scala.Function3<Object,VD,U,VD2> f, scala.reflect.ClassTag<U> evidence$8, scala.reflect.ClassTag<VD2> evidence$9)
VertexRDDinnerJoin for the behavior of the join.innerZipJoin in class VertexRDD<VD>other - (undocumented)f - (undocumented)evidence$8 - (undocumented)evidence$9 - (undocumented)public <U,VD2> VertexRDD<VD2> innerJoin(RDD<scala.Tuple2<Object,U>> other, scala.Function3<Object,VD,U,VD2> f, scala.reflect.ClassTag<U> evidence$10, scala.reflect.ClassTag<VD2> evidence$11)
VertexRDDinnerZipJoin implementation
is used.
innerJoin in class VertexRDD<VD>other - an RDD containing vertices to join. If there are multiple entries for the same
vertex, one is picked arbitrarily. Use aggregateUsingIndex to merge multiple entries.f - the join function applied to corresponding values of this and otherevidence$10 - (undocumented)evidence$11 - (undocumented)this, containing only vertices that appear in both
this and other, with values supplied by fpublic <VD2> VertexRDD<VD2> aggregateUsingIndex(RDD<scala.Tuple2<Object,VD2>> messages, scala.Function2<VD2,VD2,VD2> reduceFunc, scala.reflect.ClassTag<VD2> evidence$12)
VertexRDDmessages that have the same ids using reduceFunc, returning a
VertexRDD co-indexed with this.
aggregateUsingIndex in class VertexRDD<VD>messages - an RDD containing messages to aggregate, where each message is a pair of its
target vertex ID and the message datareduceFunc - the associative aggregation function for merging messages to the same vertexevidence$12 - (undocumented)this, containing only vertices that received messages.
For those vertices, their values are the result of applying reduceFunc to all received
messages.public VertexRDD<VD> reverseRoutingTables()
VertexRDDVertexRDD reflecting a reversal of all edge directions in the corresponding
EdgeRDD.reverseRoutingTables in class VertexRDD<VD>